首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An EPR and optical studies of VO2+ doped potassium dihydrogen citrate (PDHC) single crystals have been carried out at room temperature. It crystallizes in triclinic symmetry with the unit cell dimensions: a=11.343?, b=13.078?, c=6.272?, α=89.79°, β=94.36°, γ=104.2°. The angular variation of EPR spectra have shown that two different VO2+ complexes are located in different chemical environments and each environment contains one magnetically VO2+ site occupying substitutional position in the lattice and show very high angular dependence.  相似文献   

2.
The electron paramagnetic resonance (EPR) studies on VO2+ doped L-arginine phosphate monohydrate (LAP) single crystals at room temperature at X-band frequencies reveal the presence of two magnetically inequivalent VO2+ sites occupying interstitial positions in the lattice with fixed orientations and show very high angular dependence. The principal values of the g and A tensors indicate that the electrostatic field around the VO2+ ion is rhombic. The optical absorption spectra at room temperature show four absorption bands at 16155, 14775, 10928 and 10526 cm(-1), characteristic of rhombic symmetry. From EPR and optical absorption data, the molecular orbital bonding coefficients (beta2, epsilon2, P and k) and the crystal field parameters have been evaluated.  相似文献   

3.
Electron paramagnetic resonance of VO(2+) doped sodium hydrogen oxalate monohydrate (NaHC(2)O(4).H(2)O) single crystals and powders are examined at room temperature. Single crystal rotations in each of the three mutually orthogonal crystalline planes namely ac*, b*c* and ab* indicate four different VO(2+) complexes with intensity ratios of 4:2:1:1. It is found from the EPR analysis that the Na(+) ions are replaced with the substitutional magnetically inequivalent VO(2+) ions. The powder spectrum also clearly indicates four different VO(2+) complexes, confirming the single crystal analysis. Crystalline field around the VO(2+) ion is nearly axial. The optical absorption spectrum show two bands centered at 15408 and 12453 cm(-1). Spin Hamiltonian parameters and molecular orbital coefficients are calculated from the EPR and optical data, and results are discussed.  相似文献   

4.
Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.  相似文献   

5.
The optical spectra and EPR spectra (characterized by the spin-Hamiltonian parameters g(//), g(perpendicular), A(//) and A(perpendicular)) for the molecular ion VO2+ in LiKSO4 crystals are calculated from two microscopic theory methods, one of which is the complete diagonalization (of energy matrix) method (CDM) and the other is the perturbation theory method (PTM). The calculated three optical absorption bands and four spin-Hamiltonian parameters from the two methods are not only close to each other, but also in reasonable agreement with the experimental values. It appears that both theoretical methods are effective in the explanation of optical and EPR spectra for 3d1 ions in crystals. The negative signs of hyperfine structure constants A(//) and A(perpendicular) for VO2+ in LiKSO4 crystals are also suggested from the calculations.  相似文献   

6.
VO(2+) doped single crystal of Ba(2)Zn(HCOO)(6)(H2O)(4) (BZFA) were investigated using electron paramagnetic resonance (EPR) technique at ambient temperature. Detailed investigation of EPR spectra indicated that the VO(2+) substitutes the Zn(2+) in the structure. The sites with different orientations were observed for VO(2+) in Ba(2)Zn(HCOO)(6)(H2O)(4).single crystal, but the only intense site among these sites was evaluated to obtain spin-Hamiltonian parameters, which are the principal axis values of the g and the hyperfine tensors. The covalent bonding parameter for VO(2+) and Fermi contact term were calculated using the spin-Hamiltonian parameters.  相似文献   

7.
Cu(2+) and VO(2+) doped ammonium hydrogen oxalate hemihydrate, [(NH(4))HC(2)O(4) . (1/2)H(2)O], single crystals have been studied at room temperature and at 113K in three mutually perpendicular planes. Both ions yield unexpectedly large number of lines. The calculated results of the Cu(2+) and VO(2+) doped in [(NH(4))HC(2)O(4) . (1/2)H(2)O] indicate that both ions substitute with the NH(4)(+) ion in the structure. The EPR spectra of Cu(2+) ions are characteristic of tetragonally elongated octahedral site and the spectra of VO(2+) are characteristic of tetragonally compressed complex. The angular variation of the EPR spectra has shown that two different Cu(2+) and VO(2+) complexes are located in different chemical environments, and each environment contains two magnetically inequivalent Cu(2+) and VO(2+) sites in distinct orientations occupying substitutional positions in the lattice and show very high angular dependence. The principal g and the hyperfine (A) values of both ions are determined.  相似文献   

8.
Electron paramagnetic resonance (EPR) spectra of VO2+ ions doped in Kainite (a mineral salt) single crystals and powder were recorded at room temperature at X-band frequencies.The angular variation studies of the spectra indicate that the VO2+ ion enters Mg2+ ion site substitutionally. The principal values of g and A-tensors were determined from the EPR spectral studies. Using these EPR parameters, the molecular orbital bonding parameters of VO2+ ion in the lattice have been evaluated and discussed.  相似文献   

9.
X-Band electron paramagnetic resonance (EPR) studies of VO(2+) ions in l-asparagine monohydrate single crystals have been done at room temperature. Detailed EPR analysis indicates the presence of two magnetically inequivalent VO(2+) sites. Both the vanadyl complexes are found to take up interstitial position. The angular variation of the EPR spectra in three planes ab, bc and ca are used to determine principal g and A tensors. For the two sites the spin Hamiltonian parameters are, site I: g(x)=1.9633, g(y)=2.0274, g(z)=1.9797, A(x)=88, A(y)=61, A(z)=161x10(-4)cm(-1); site II: g(x)=1.9627, g(y)=1.9880, g(z)=1.9425, A(x)=90, A(y)=66, A(z)=167x10(-4)cm(-1). The optical absorption study is also carried out at room temperature and absorption bands are assigned to various transitions. The theoretical band positions are obtained using energy expressions and a good agreement is found with the experimental values. By correlating EPR and optical data different molecular orbital coefficients are evaluated and the nature of bonding in the crystal is discussed.  相似文献   

10.
The temperature-dependent electron paramagnetic resonance (EPR) spectrum of approximately 1% Cu(II) ions doped into Ba 2Zn(HCO2)6 x 4 H2O was analyzed at the Q-band frequencies over the temperature range 100-350 K to obtain structural information about the local environment. It can be concluded that the host crystal imparts a large orthorhombic strain which mainly corresponds to a tetragonal compression imposed onto the Cu(II)O6 species. This results in a copper center which adopts an orthorhombically distorted elongated geometry with the elongated axis perpendicular to the direction of the tetragonal compression due to the host crystal. There are two possible axes of elongation, and these represent two conformers separated by approximately 320 cm(-1). The thermal population of the higher energy level averages the g values, giving the observed temperature-dependent EPR spectra. The averaging process is between vibronic levels that are localized at two different minima of a single ground-state potential energy surface. These vibronic levels correspond to vibrational levels having different electronic properties. The determination of the host lattice strain parameters from the Cu(II) EPR spectra means that the guest ion is used as a probe of the environment of the Zn(II) site. The structural data derived from the lattice strain parameters are correlated with those from the Ba 2Zn(HCO2)6 x 4 H2O crystal structure.  相似文献   

11.
The hydrothermal reaction of Th(NO3)4.xH2O with V2O5 and H6TeO6 at 200 degrees C under autogenously generated pressure results in the formation of Th(VO2)2(TeO6)(H2O)2 as a pure phase. The single-crystal X-ray data indicate that Th(VO2)2(TeO6)(H2O)2 possesses a three-dimensional structure constructed from ThO9 tricapped trigonal prisms, VO5 distorted square pyramids, VO4 distorted tetrahedra, and TeO6 distorted octahedra. Both of the vanadium polyhedra contain VO2+ vanadyl units with two short V=O bond distances. The tellurate octahedron is tetragonally distorted and utilizes all of its oxygen atoms to bond to adjacent metal centers, sharing edges with ThO9 and VO5 units, and corners with two ThO9, one VO5, and two VO4 polyhedra. Crystallographic data: Th(VO2)2(TeO6)(H2O)2, orthorhombic, space group Pbca, a = 12.6921(7), b = 11.5593(7), c = 13.0950(8) A, Z = 8 (T = 193 K). The UV-vis diffuse reflectance spectrum of Th(VO2)2(TeO6)(H2O)2 shows vanadyl-based charge-transfer absorption features. Th(VO2)2(TeO6)(H2O)2 decomposes primarily to Th(VO3)4 when heated at 600 degrees C in air.  相似文献   

12.
The relationship between the impurity structures and the electron paramagnetic resonance (EPR) parameters D, (a-F) have been studied by diagonalizing the complete energy matrices for Mn2+ ion in [Mg(H2O)6]SnCl6 single crystal in a trigonal ligand field within a weak-field-representation. It is shown that the local lattice structure around Mn2+ ion in [Mg(H2O)6]SnCl6 exhibits an elongation distortion which is different at 290 K and 77 K. The local structure parameters R=2.223+/-0.027A, theta=52.966+/-0.004 degrees and R=2.205+/-0.030A, theta=53.155+/-0.047 degrees for Mn2+ ion in [Mg(H2O)6]SnCl6 are determined at different temperatures 290 K and 77 K, respectively, and EPR parameters D and (a-F) can also get a satisfactory explanation simultaneously.  相似文献   

13.
Electron paramagnetic resonance (EPR), optical absorption, and FT-IR spectra of vanadyl ions in the sodium-lead borophosphate (Na(2)O-PbO-B(2)O(3)-P(2)O(5)) (SLBP) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO(2+) ions. The spin Hamiltonian parameters g and A are found to be independent of the V(2)O(5) content and temperature. The values of the spin Hamiltonian parameters indicate that the VO(2+) ions in SLBP glasses are present in octahedral sites with tetragonal compression. The population difference between Zeeman levels (N) is calculated as a function of temperature for an SLBP glass sample containing 1.0 mol % VO(2+) ions. From the EPR data, the paramagnetic susceptibility (χ) is calculated at different temperatures, and the Curie constant (C) is calculated from the 1/χ versus T graph. The optical absorption spectra of the glass samples show two absorption bands, and they are attributed to V(3+) and V(4+) ions. The optical band gap energy (E(opt)) and Urbach energy (ΔE) are calculated from their ultraviolet absorption edges. It is observed that, as the vanadium ion concentration increases, E(opt) decreases and ΔE increases. The study of the IR absorption spectrum depicts the presence of BO(3), BO(4), PO(3), PO(4), and VO(5) structural units.  相似文献   

14.
EPR spectra of VO2+ ions doped in single crystals of Cs2Co(SO4)2.6H2O single crystals have been studied at various temperatures (390–103 K) on X-band frequency. The detailed EPR analysis shows three vanadyl complexes with differing intensities. The g and A tensors are found to be axially symmetric. The intense vanadyl complexes in the lattice are found to occupy the Co2+ substitutional sites, whereas the weak vanadyl complex at the interstitial sites. The optical absorption spectrum at room temperature shows three absorption bands characteristic of VO2+ ions in tetragonal symmetry. By correlating the EPR and optical data, the molecular bonding coefficients and the Fermi contact interaction terms have been evaluated and discussed. The line broadening of VO2+ spectra on cooling the crystal is explained on the basis of spin-lattice relaxation narrowing. The spin-lattice relaxation time for the host Co2+ ions has been estimated at various temperatures.  相似文献   

15.
EPR and optical absorption spectra of Cr3+ ions doped in KZnClSO4 x 3H2O single crystals have been studied at room temperature. The EPR spectrum exhibits a group of three fine structure transitions characteristic of Cr3+ ions. From the observed EPR spectra, the spin-Hamiltonian parameters have been determined. The optical absorption spectrum exhibits two broad bands characteristic of Cr3+ ions in an octahedral symmetry. From the observed band positions, the crystal field parameters have been evaluated.  相似文献   

16.
Optical Switching in VO2 Thin Films   总被引:5,自引:0,他引:5  
Vanadium dioxide thin films have been deposited from vanadium alkoxides VO(OR)3. An amorphous film is formed that transforms into crystalline VO2 upon heating at 500°C under a reducing atmosphere. Optically transparent VO2 thin films are then obtained that exhibit both electrical and optical switching around 70°C. The switching temperature together with the shape of the hysteresis loop can be modified by doping VO2 films with foreign cations. Doped MxVO2 (M = W6+, Nb5+, Ti4+, Cr3+ or Al3+) thin films have been prepared under the same conditions by mixing the vanadium alkoxide and a metal salt in an alcoholic solution. The switching temperature decreases when the film is doped with high-valent cations (W6+) and increases with low-valent cations (Al3+, Cr3+). The transition temperature first decreases and then increases when TiIV is added to the VO2 film while the width of the hysteresis loop is significantly reduced.  相似文献   

17.
The EPR study of VO(T(m-NO2)PP)+ at 77 K is reported. A triplet state spectrum of VO(T(m-NO2)PP)(+) at 77 K is obtained. The ZFS parameters are obtained from the computer simulation. An inter-electron distance of 3.57+/-0.05 A between the two unpaired electrons is obtained. This is attributed to an a(2u) ground state of the porphyrin. Also, room temperature EPR of the pre-oxidized species of VOTPP with SbCl5 are reported. The effect on the oxidation potentials due to substitution is also reported.  相似文献   

18.
The magnetic environments of Cu2+ doped Na+ complex have been identified by electron paramagnetic resonance (EPR) technique. The angular variation of the EPR spectra has shown that two different Cu2+ complexes are located in different chemical environments, and each environment contains one magnetic Cu2+ site occupying substantial positions in the lattice and showing very high angular dependence. The principal g, and the hyperfine structure parameter (A) values of two sets of Cu2+ complex groups are determined. The covalency parameter, mixing coefficients and Fermi-contact term of the complex are obtained, and the ground state wave function of the Cu2+ ion in the lattice has been constructed.  相似文献   

19.
Pascoite mineral having yellow-orange colour of Colorado, USA origin has been characterized by EPR, optical and NIR spectroscopy. The colour dark red-orange to yellow-orange colour of the pascoite indicates that the mineral contain mixed valency of vanadium. The optical spectrum exhibits a number of electronic bands due to presence of VO(II) ions in the mineral. From EPR studies, the parameters of g, A are evaluated and the data confirm that the ion is in distorted octahedron. Optical absorption studies reveal that two sets of VO(II) is in distorted octahedron. The bands in NIR spectra are due to the overtones and combinations of water molecules.  相似文献   

20.
Some of the ascidians belonging to the suborder Phlebobranchia accumulate vanadium ion efficiently from seawater. Clarification of the mechanism of this surprisingly efficient metal-accumulation system is desirable. Two mutually similar vanadium-binding proteins (vanabin1 and vanabin2) have recently been isolated from a vanadium-rich ascidian Ascidia sydneiensis samea. In this study, the vanadium-binding properties of vanabin2 have been investigated by X-band CW EPR and pulsed EPR spectroscopy. CW EPR spectra of samples containing various ratios of VO2+ and vanabin2 invariably exhibited a usual mononuclear-type VO2+ EPR signal with the intensity dependent on the ratio [vanabin]/[V]. EPR titration has shown that vanabin2 can bind up to approximately 23.9 vanadium ions per one molecule, almost all of which ( approximately 84%) are in a mononuclear VO2+ state as estimated by EPR quantitation. Electron spin-echo envelope modulation (ESEEM) spectra of VO-vanabin2 exhibited reasonably intense peaks attributable to amine nitrogen. This is consistent with the fact that vanabin2 is a lysine-rich protein (14 lysines out of 91 amino acids). The present study reveals the uniqueness of vanabin2, which can bind a large number of metal ions in a mononuclear fashion in contrast to the situation for ferritin and metallothionein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号