首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New hybrid organic–inorganic nanocomposites consist of β‐cyclodextrin (β‐CD)/epichlorohydrin (ECH), and bentonite clay were prepared by direct intercalation through one step emulsion polymerization. The structure and thermal stability of prepared nanocomposites were investigated by Fourier‐transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), field emission‐scanning electron microscopy (FE‐SEM), energy dispersive X‐ray analysis (EDAX), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), differential of differential scanning calorimetry (DDSC), thermogravimetric analysis (TGA) and differential thermogravimetric (DTG) analyses. The observed results show that the β‐CD polymer/clay nanocomposites (β‐CD–ECH polymer/clay) with higher thermal stability than β‐CD–ECH polymer were successfully prepared. The removal of heavy metals such as Cu(II), Zn(II) and Co(II) ions from drinking water was studied using a batch method at ambient temperature. The removal percentage and distribution coefficients (Kd) were determined for the adsorption system. It was found that the β‐CD–ECH polymer/clay nanocomposites showed higher removal capacity for Co2+, Cu2+ and Zn2+ ions in comparison with β‐CD–ECH polymer. The selectivity order could be given as Zn2+ > Cu2+ > Co2+. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Tanyanyiwa J  Hauser PC 《Electrophoresis》2002,23(21):3781-3786
The detection of alkali, alkaline earth and heavy metal ions with a high-voltage capacitively coupled contactless conductivity detector (HV-C(4)D) was investigated. Eight alkali, alkaline earth metal ions and ammonium could be separated in less than 4 min with detection limits in the order of 5 x 10(-8) M. The heavy metals Mn2+, Pb2+, Cd2+ Fe2+, Zn2+, Co2+, Cu2+ and Ni2+ could also be successfully resolved with a 10 mM 2-(N-morpholino)ethanesulfonic acid/DL-histidine (MES/His)-buffer. Zn2+, Co2+, Cu2+ and Ni2+ showed an indirect response. The detection limits for the heavy metals were determined to range from about 1 to 5 microM.  相似文献   

3.
The presence of heavy metals in environmental waters having an important place in the industrial waste is a major threat to viability. Heavy metals are transported to humans through the ecological cycle, damaging many tissues and organs. In recent years, agricultural and food waste can be used to remove heavy metals. At the present study, magnetically modified coffee grains which are alternative to conventional particle systems were prepared and heavy metal removal performances were investigated. The coffee grains used were magnetically modified by contact with water-based magnetic fluid. Magnetically modified coffee grains were characterized by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area analysis and electron spin resonance (ESR). Adsorption studies are made with four different heavy metal ions, namely Cu(II), Pb(II), Cd(II) and Zn(II). Adsorption isotherms were determined and heavy metal removal performance of magnetic coffee grains were investigated from synthetic waste water.  相似文献   

4.
A chelating resin based on modified poly (styrene‐alt‐maleic anhydride) with 3‐aminobenzoic acid was synthesized. This modified resin was further reacted by 1,2‐diaminoethane or 1,3‐diaminopropane in the presence of ultrasonic irradiation to prepare tridimensional chelating resin for the removal of heavy metal ions from aqueous solutions. The adsorption behavior of Fe(II), Cu(II), Zn(II) and Pb(II) ions was investigated by synthesized chelating resins in various pH. Among the synthesized resins, CSMA‐AB1 and CSMA‐AB2 demonstrated a high affinity for the selected metal ions compared to SMA‐AB, and the order of removal percentage changes as follow: Fe(II) > Cu(II) > Zn(II) > Pb(II). The adsorption of all metal ions in acidic medium was moderate, and it was favored at the pH value of 6 and 7. Also, the prepared resins were examined for removal of metal ions from industrial wastewater and were shown to have a very efficient adsorption in the case of Cu(II), Fe(II) and Pb(II); however, the adsorption of Zn(II) was lower than others. The resin was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction analysis and thermogravimetric analysis/derivative thermogravimetry. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Four organic-modified clays based on a SWy-2 montmorillonite were prepared by embedding ammonium organic derivatives with different chelating functionalities (NH(2), COOH, SH or CS(2)) in the interlayer space of montmorillonite. Organic molecules such as (a) hexamethylenediamine, (b) 2-(dimethylamino)ethenethiol, (c) 5-aminovaleric acid and (d) hexamethylenediamine-dithiocarbamate were used for the clay modification in order to study the effect of the chelating functionality on heavy metal ions binding from aqueous solutions. The organoclays were characterized by powder X-ray diffraction (XRD), infrared (FTIR) and NMR spectroscopies. The experimental data showed that the organic molecules are intercalated into the interlamelar space with the long dimension parallel to the clay sheets. Their sorbing properties were evaluated for the removal of heavy metals, Pb, Cd and Zn, from aqueous solutions as a function of the pH. When compared with the unmodified SWy-2 montmorillonite, the modified clays show significant improvement in terms of sorbing selectivity as well as of metal loading capacity. The fit to adsorption data by a Surface Complexation Model shows that the intercalated molecules act as specific binding sites in the clay. These contribute additional sorption capacity which is additive to the variable charge edge-sites of the clay in competition with the permanent charge sites.  相似文献   

6.
室温铁磁性Ni2+掺杂TiO2纳米带的制备与表征   总被引:1,自引:0,他引:1  
通过水热离子交换方法, 制得不同含量的过渡金属离子Ni2+掺杂的、锐钛矿型的TiO2纳米带. 使用X射线衍射(XRD), 扫描电子显微镜(SEM), 透射电子显微镜(TEM), 高分辨透射电子显微镜(HRTEM), X射线光电子能谱(XPS), 傅立叶变换红外(FTIR)光谱和磁性测试等手段对样品进行了详尽的表征. 结果表明, 经过离子交换, Ni2+离子进入到了TiO2纳米带的晶格中, 其中并没有形成金属Ni团簇或纳米颗粒. 此外, 磁性测试的结果表明, 实验制备的Ni-TiO2样品具有室温铁磁性和磁滞回线特性, 并且, 由于TiO2纳米带中Ni2+离子有较好的分散性, 在相同的外磁场条件下, 样品的磁化强度随着掺杂Ni2+含量的增加而增大.  相似文献   

7.
The presence of industrial pollutants, especially salts, heavy metals ions, and dyes in water and wastewater is considered a serious environmental issue. To eliminate these pollutants, a high-performing nanofiltration (NF) membrane was prepared by blending the functionalized mesoporous carbon CMK-5 (F-CMK-5) nanofiller. This membrane was synthesized by introducing the active groups of sulfonyl and amide to the surface of mesoporous carbon CMK-5 through covalent functionalization. Characterizations were conducted to study the membranes' physical properties and separation performance in terms of antifouling properties and rejection of salts, heavy metal ions, and dyes. The interactions between the active sites of the nanocomposite membrane and the studied solutes, including dyes and heavy metal ions in aqueous solutions, were studied by the density functional based tight binding method and structural optimization was carried out. Insertion of the F-CMK-5 nanofiller was eventuated in a remarkable increase in surface hydrophilicity, pure water flux, and antifouling properties. For all membranes, the lowest and the highest salt rejection was obtained for NaCl and Na2SO4, respectively, exhibiting the characteristics of NF membranes. Moreover, M0.3 with 0.3 wt% nanofiller showed the highest rejection for heavy metal ions (Fe2+ = 99.9%, Zn2+ = 99.9%, Cu2+ = 99.7%, and Pb2+ = 99.2%) and dyes (RB5 = 99.21, DR16 = 98.87, and MB = 98.12%), as well as high separation performance for filtration of multipollutant solutions. The reusability and 144 h uninterrupted filtration experiments for M0.3 confirmed the stability of the membrane. The findings suggest that the PES/F-CMK-5 nanocomposite NF membrane is a promising candidate for water and wastewater treatment.  相似文献   

8.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   

9.
Poly(acrylonitrile-methylmethacrylate-sodium vinylsulfonate) membranes were subjected to seven different chemical modifications and the amount of the newly formed groups was measured for each membrane. Urease was then covalently immobilized onto the modified membranes and the amount of bound protein was determined. The kinetic parameters V(max) and K(m) of the immobilized urease were studied under static and dynamic conditions. Results showed that the rate of the enzyme reaction was higher for the membranes modified with NH(2)OH . H(2)SO(4), NH(2)NH(2) . H(2)SO(4), NaOH + EDA and NaOH + GA + EDA. It was confirmed that the reaction rate, measured under dynamic conditions, was higher than that one determined under static conditions. The influence of Cu(II) ions, as inhibitors, on the enzyme reaction kinetics (V(i) and K(i)) was also investigated. It turned out that the most sensitive membranes towards Cu(II) were those modified with NH(2)NH(2) . H(2)SO(4), NaOH + EDA and H(2)O(2). The results initiated further investigations on the influence of other heavy metal ions (Cd(II), Zn(II), Ni(II) and Pb(II)) over urease bound to a NH(2)OH . H(2)SO(4)-modified membrane. It was found that the inhibition effect of the heavy metal ions over immobilized urease decreases in the order: Cu(II) > Cd(II) > Zn(II) > Ni(II) > Pb(II). [Diagram: see text]  相似文献   

10.
The present research combines biosorption and photocatalysis in a functional TiO(2)-immobilized chitosan adsorbent (CTA). CTA can degrade organic pollutants and adsorb metal ions simultaneously. Target pollutants were dyes of cationic (rhodamine B, Rh.B) and anionic (methyl orange, MO) nature, with Ni(2+) and Cu(2+) selected as heavy metals. The presence of Ni(2+) or Cu(2+) improved the degradation ability of CTA for MO, but inhibited the degradation of Rh.B, with Cu(2+) exhibiting stronger effects than Ni(2+). There was no significant difference in CTA activity when the metal ions were pre-adsorbed or when they coexisted in the solution with the organic dyes. Protons in the reaction system affected the degradation performance in a similar way for Ni(2+) and Cu(2+) leading to a different effect on the degradation for MO and Rh.B. An X-ray photoelectron spectroscopy analysis of the binding energies of the metal ions on the surface in the presence of the cationic or anionic dyes explained the different behaviors. Since anionic and cationic dyes possess chromogenic groups of different charges, they adversely affect the production of OH? radicals when coexisting with Cu(2+) or Ni(2+).  相似文献   

11.
Several dual metal cyanide catalysts were prepared from potassium ferrocyanide,metal chloride(where metal = Zn2+,Mn2+,Ni2+,Co2+ and Fe2+),t-butanol(complexing agent) and PEG-4000(co-complexing agent).The catalysts were characterized by elemental analysis(CHN and X-ray fluorescence),X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,Fourier-transform infrared spectroscopy,and UV-Visible spectroscopy.The dual metal cyanide catalysts were used in several acid catalyzed multi-component coup...  相似文献   

12.
Acidic mine drainage(AMD) containing acidity and a broad range of heavy metal ions is classified as hazardous, and must be properly treated. The removal mechanism of heavy metal ions in acidic mine drainage contai- ning Cu2+, Fe2+, and Zn2+ with biological method was studied here. Using 20 mmol/L ethanol as carbon source, Desulfovibrio marrakechensis,one of sulfate reducing bacteria(SRB) species, grew best at 35 ℃ and pH=6.72 with concentrations of 10, 55 and 32 mg/L for Cu2+, Fe2+ and Zn2+, respectively. The removal efficiency for each ion mentioned above was 99.99%, 87.64% and 99.88%, respectively. The mineralogy and surface chemistry of precipitates were studied by means of energy dispersive spectrometer(EDS), X-ray photoelectron spectroscopy(XPS), X-ray diffraction(XRD) combined with control tests. The experimental results demonstrate that the removal mechanism of heavy metal ions by Desulfovibrio marrakechensis is comprehensive function of chemical precipitation, adsorption and bioprecipitation. The biogenic iron sulfide solid was characterized as greigite(Fe3S4), while the zinc sulfide solid was characterized as sphalerite(ZnS).  相似文献   

13.
Polyphenylsulfone/multiwalled carbon nanotubes/polyvinylpyrrolidone/1-methyl-2-pyrrolidone mixed matrix ultrafiltration flat-sheet membranes were fabricated via phase inversion process to inspect the heavy metals separation efficacy from aqueous media. Fabricated membranes cross-sectional morphological changes and the topographical alterations were assessed with Scanning electron microscopy (SEM) and atomic force microscopy (AFM). Particularly, MWCNTs assisted membranes exhibited better permeability ability as well as heavy metal removal enactment than virgin membrane. The dead-end filter unit was engaged in current research to examine the permeability and heavy metal removal competence of membranes. With the continuous enhancement of MWCNTs wt% in a polymer matrix, significant enhancement was observed with pure water flux study, from 41.69 L/m2 h to >185 L/m2 h as well as with the heavy metals separation study. Added additive MWCNTs can impact the pore sizes in membranes. The heavy metal separation results achieved, the membrane with 0.3 wt% of MWCNTs (PCNT-3) exhibited >98%, >76% and >72% for Pb2+, Hg2+ and Cd2+ ions, respectively. Overall, MWCNTs introduced PPSU membranes exposed best outcomes with heavy metals contained wastewater treatment.  相似文献   

14.
This study’s main objective was the development of effective low-cost sorbents for the removal of heavy metal ions from aqueous solutions. The influence of different factors on the sorption capacity of ash and modified ash as low-cost sorbents obtained by different methods was investigated. The synthesis of new ash-based materials was carried out at ambient temperature (20°C), 70°C, and 90°C, respectively, in an alkaline medium with NaOH concentrations of 2 M and 5 M, respectively, corresponding to a mixture with solid/liquid ratios of 1: 3 and 1: 5, respectively. The prepared materials (sorbents) were characterised by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffraction, and BET surface measurement. Adsorption isotherms were determined using the batch equilibrium method. The results showed that these types of new materials displayed a good capacity to remove copper, nickel, and lead ions (29.97 mg of Cu2+ per g of sorbent, 303 mg of Ni2+ per g of sorbent, and 1111 mg of Pb2+ per g of sorbent) from aqueous solutions. The modified materials were prepared using an alkaline attack (a recognised method used in previous studies), but Romanian ash from a thermal power plant was studied for the above purpose for the first time. Hence, the factors which affect the sorption capacity of the prepared low-cost sorbents were determined and their behaviour was explained, taking into account the composition and structure of the new materials.  相似文献   

15.
We report a facile and economic hydrothermal process for multifunctionally engineered copper oxide/zinc oxide-tetrapods (CuO/ZnO-T) nanocomposite for wastewater treatment. The resultant CuO/ZnO-T nanocomposite possesses high porosity, large surface area, and low band gap. All these properties are advantageous for photocatalyst and adsorbent for dyes and heavy metal ions removal. The morphology of synthesized nanocomposite was characterized using X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller, Fourier-transform infrared spectroscopy, and UV–Visible absorption spectroscopy. The results confirmed the attachment of CuO on the ZnO-T surface, forming a hybrid nanocomposite. The concentration of heavy metal ions was monitored using the atomic absorption spectroscopy technique. The synthesized CuO/ZnO-T nanocomposite was investigated for the decontamination of anionic and cationic dyes, Reactive yellow-145 (RY-145) and Basic violet-3 (BV-3) and heavy metal ions (Chromium (VI) and Lead (II)). The CuO/ZnO-T nanocomposite exhibited superior photocatalytic efficiency (80% RY-145 dye removal and 86% BV-3 dye removal) and adsorption capacity (99% Chromium (VI) removal and 97% Lead (II) removal) as compared to pristine ZnO-T. The mechanism for the reduction of dyes and heavy metal ions was discussed by different kinetics and isotherm models. The current study inferred that CuO/ZnO-T nanocomposite is a potential candidate as a proficient photocatalyst/adsorbent for the removal of various wastewater contaminants.  相似文献   

16.
Cobalt- and iron-containing catalysts active in the oxidation of organic dyes with hydrogen peroxide have been prepared from granular synthetic NaY and HY zeolites without a binder by ion exchange followed by heat treatment at 350–500°C. It has been demonstrated by X-ray photoelectron spectroscopy that cobalt and iron in these catalysts are in the form of Co2+ and Fe3+ ions on the support surface. The FeHY and CoNaY catalysts are most effective and stable in the oxidation of the anionic dye carmoisine in weakly acidic and alkaline media.  相似文献   

17.
Increased concentrations of heavy metals in the environment are of public health concern, their removal from waters receiving considerable interest. The aim of this paper was to study the simultaneous adsorption of heavy metals (Cu, Cd, Cr, Ni, Zn and Pb) from aqueous solutions using the zeolitic volcanic tuffs as adsorbents. The effect of thermal treatment temperature, particle size and initial metal concentrations on the metal ions sorption was investigated. The selectivity of used zeolite for the adsorption of studied heavy metals followed the order: Pb > Cr > Cu > Zn > Cd > Ni. The removal efficiency of the heavy metals was strongly influenced by the particle sizes, the samples with smaller particle size (0–0.05 mm) being more efficient in heavy metals removal than those with larger particle size (1–3 mm). Generally, no relevant changes were observed in heavy metals removal efficiency for the treatment temperatures of 200 °C and 350 °C. Moreover, at a higher temperature (550 °C), a decrease in the removal efficiencies was observed. The Cd, Zn, Cu, Cr, Zn and Ni sorption was best described by Langmuir model according to the high values of correlation coefficient. The pseudo-first-order kinetic model presented the best correlation of the experimental data.  相似文献   

18.
A montmorillonite-illite clay was modified using alkaline hydrothermal treatment (reflux method) and applied to the removal of aqueous Cs+ ions. The alkaline solutions were prepared by dissolving NaOH in seawater and in distilled water, and the effect of the two alkaline media on the sorption capacities of the modified clay was discussed. The modified materials were characterized using XRD, SEM/EDS, and FTIR. As a result of the modification, the original mineral was partially transformed into a zeolitic material with spherical morphology. The results showed that the modification improved the Cs+ uptake capacity of the starting clay, with the clay modified in distilled water medium demonstrating higher sorption capacity. The sorption data were adequately described using the Freundlich and Dubinin-Radushkevich isotherm models.  相似文献   

19.
The objective of the presented study was to investigate the adsorption of Cu, Co, Mn, Zn, Cd and Mn on A-type zeolite. The isotherms for adsorption of metals from their nitrates were registered. The following adsorption constants K of metals were found: 162,890, 124,260, 69,025, 16,035, 10,254, and 151 [M(-1)] for Cu, Co, Mn, Zn, Cd, and Ni, respectively, for the concentration range 10(-4)-10(-3) M. On the other hand, the investigation of pH influence on the distribution constants of metals showed that the adsorption of metals proceeds essentially through an ion-exchange process, surface hydrolysis, and surface complexation. The supplementary results from DRIFT, scanning electron microscopy, and X-ray diffraction methods confirmed the presumption about the possible connection between the electronic structure of divalent ions and their adsorption behavior, showing that ions with d5 and d10 configurations such as Mn2+, Zn2+, Cd2+, with much weaker hydrolytic properties than Cu2+ and Ni2+, strongly interact with the zeolite framework and therefore their affinity to the zeolite phase is much stronger when compared with that of the Ni2+ ion, but at the same time not as strong as the affinity of the Cu2+ ion, the latter forming a new phase during the interaction with zeolite framework. For Zn2+, during inspection of the correlation between the proton concentration H/Al and zinc concentration Zn/Al on the zeolite surface, the formation of the surface complex [triple bond]S-OZn(OH) was proposed. A correlation between the heterogeneity of proton concentrations H/Al on Me-zeolite surfaces and the hydrolysis constants pKh of Me2+ ions was found.  相似文献   

20.
Abstract

In the present work, a novel composite consisting of magnetite, activated carbon from spent coffee grounds and natural clay (MACCC) was prepared by a one-pot synthesis method via a simultaneous activation and magnetization processes. Various techniques (XRD, FTIR, SEM, TEM, EDX, BET) were utilized to characterize the synthesized composite before utilizing it as an adsorbent for removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions. Conditions for removal of heavy metals were thoroughly optimized as 25?°C, pH of 5.5, adsorbent dosage of 2?g L?1, and a contact time of 60?min. Three models of pseudo first-, second-order and intraparticle diffusion as well as three models of Langmuir, Freundlich, and Temkin were used to analyze kinetics and isotherms of the adsorption process. Thermodynamics was discussed completely. Regeneration and recyclability of the adsorbent were also evaluated. Based on the analysis of experimental results, a possible adsorption mechanism of heavy metals onto the synthesized composite was proposed. The maximum capacities caculated from Langmuir model followed the order of Pb(II) > Cu(II) > Ni(II) as 143.56, 96.16 and 84.86?mg·g?1, respectively. The overall results indicated that MACCC is a potential adsorbent for removal of toxic Pb(II), Cu(II) and Ni(II) ions from wastewater due to simple preparation, high removal efficiency and good recyclability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号