首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Self-diffusion coefficients for the low molecular weight glass former o-terphenyl have been measured near Tg by isothermally desorbing thin film bilayers of deuterio and protio o-terphenyl in a vacuum chamber. We observe translational diffusion that is about 100 times faster at Tg + 3 K than the Stokes-Einstein prediction. Predictions from random first order transition theory and a dynamic facilitation approach are in reasonable agreement with our results; in these approaches, enhanced translational diffusion is associated with spatially heterogeneous dynamics. Self-diffusion controls crystallization in o-terphenyl for most of the supercooled liquid regime, but at temperatures below Tg + 10 K, the reported crystallization rate increases suddenly while the self-diffusion coefficient does not. This work and previous work on trisnaphthylbenzene both find a self-diffusion-controlled crystal growth regime and an enhancement in self-diffusion near Tg, suggesting that these phenomena are general characteristics of fragile low molecular weight glass formers. We discuss the width of the relaxation time distributions of o-terphenyl and trisnaphthylbenzene as they relate to the observation of enhanced translational diffusion.  相似文献   

2.
In this work, by adopting the united atom model of cis‐1,4‐poly(butadiene) (PB), we systemically investigate the effect of the chain structure on the glass transition temperature (Tg) and the viscoelastic property of PB system. First, we analyze the atom translational mobility, bond reorientation dynamics, torsional dynamics, conformational transition rate, and dynamic heterogeneity of the PB chains with different chain structures in detail by determining the corresponding Tg. In addition, our results clearly indicate that with the decrease of the amount of the free end atoms of PB via the end‐linking method, the mobility of the PB chains quickly decreases. As a result, the Tg of the PB chains gradually increases. Depending on the chain structure and the calculation method, the Tg of the PB chains varies from 154 to 240 K. In addition, the temperature dependence of the dynamic properties has different Arrhenius behaviors above and below Tg. The calculated activation energy varies from 7.37 to 16.37 KJ/mol for different chain structures above Tg, which can be compared with those for other polymers. In addition, through the end‐linking approach the strong interaction between the PB chains improves the storage modulus G′ and the loss modulus . Meanwhile, the immobility of the free end atoms effectively reduces the friction loss of the chains under the shear field, which is reflected by the low loss factor . In summary, this work can further help to understand the effect of the chain structure on the dynamic properties of the PB chains. Meanwhile, it provides an effective approach to reduce the energy loss during the dynamic periodic deformation, which can cut the fuel consumption via the end‐linking method. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1005–1016  相似文献   

3.
The translational dynamics of the low molecular weight glass-former tris(naphthylbenzene) have been studied on the length scale of a few nanometers at the glass transition temperature Tg. Neutron reflectivity was used to measure isotopic interdiffusion of multilayer samples created by physical vapor deposition. Deposition with the substrate held at Tg-6 K allows observation of dynamics characterizing the equilibrium supercooled liquid. The diffusion coefficient measured at q = 0.03 A(-1) was determined to be 1x10(-17) cm2/s at 342 K (Tg). The self-part of the intermediate scattering function I(s)(q,t) decays exponentially. Samples deposited well below Tg show a substantial thermal history effect during subsequent translational motion at Tg.  相似文献   

4.
This personal review focuses on two aspects. First, glass transition dynamics and hence also calorimetry is connected to dynamic heterogeneity. This results in an interplay of the corresponding dynamic length scales and length scales from structural heterogeneities in polymeric samples. Second, the complexity of the dynamic glass transition itself results in different effects of this interplay for different experimental observables. Hence the comparison of results from calorimetry with other relaxation methods gives important clues to an understanding of the complex glass transition phenomenon.  相似文献   

5.
不同结晶度的乙二醇及其水溶液玻璃化转变与焓松弛   总被引:7,自引:0,他引:7  
为了考察晶体成分对无定形成分玻璃化转变和结构松弛行为的影响,利用差示扫描量热法(DSC),结合低温显微技术,研究了乙二醇(EG)及其50%水溶液在不同结晶度时的玻璃化转变和焓松弛行为.采用等温结晶方法控制骤冷的部分结晶玻璃体中的晶体份额.DSC结果表明,对于部分结晶的EG,只有单一的玻璃化转变过程,而对于50%EG,当结晶度不同时,不同程度地表现出两次玻璃化转变(无定形相Ⅰ和无定形相Ⅱ).相Ⅰ的玻璃化转变温度和完全无定形态的含水EG的玻璃化转变温度相一致;相Ⅱ的玻璃化转变温度要比此温度约高6 ℃.低温显微观察结果印证了DSC实验结果.DSC等温退火的实验和KWW(Kohlrausch-Williams-Watts)衰变函数分析结果表明,EG无定形和50%EG中的两种无定形有不同的焓松弛行为.  相似文献   

6.
Acid-oxidized multiwalled carbon nanotubes (MWCNTs) were introduced into a polyurethane (PU) matrix at low filler levels (0.01–0.25 wt%) through either van der Waals or covalent interactions, and their glass transition dynamics using dynamic mechanical analysis and laser-interferometric creep rate spectroscopy was investigated. The nanocomposites reveal substantial impact on the PU glass transition dynamics, which depends on the nanotube content and type of interfacial interactions. The pronounced dynamic heterogeneity within the glass transition covering 200 °C range and the displacement of main PU relaxation maxima from around 0 to 80–140 °C were registered. The results are treated in the framework of chemical inhomogeneity, constrained dynamics effects, and different motional cooperativities. The peculiariaties of the glass transition dynamics in the composites are reflected in their dynamic and static mechanical properties, in particular a two- to threefold increase in modulus and tensile strength for the covalent interfacial interaction of MWCNTs with PU.  相似文献   

7.
The dynamics of polymer chains in the bulk state are discussed at three different temperature scales: (i) Well above the glass transition temperature where the basic step of motion is the rotameric transition of bonds. In this regime, the dynamics may conveniently be analyzed by the rotational isomeric state model, (ii) In the vicinity of glass transition where friction forces from the environment dominate. In this regime, the dynamics may be modeled according to the cooperative kinematics model, (iii) Well below glass transition. Here, an analogy with a native protein is made, and the mean-squared fluctuations are analyzed by adopting the Gaussian Network Model, which recently proved successful in describing fluctuations in native proteins.  相似文献   

8.
The reorientation of dye molecules can be used to monitor the segmental dynamics of a polymer melt. We utilize this technique to measure stress-induced mobility in a lightly cross-linked poly(methyl methacrylate) (PMMA) glass during tensile creep deformation. At 377 K (18 K below the glass transition temperature Tg), the mobility increased by a factor of 100 during deformation with a stress of 20 MPa. Generally, the mobility increased as the stress, strain, and strain rate increased. After removing the stress, we observed that the enhanced mobility slowly disappeared during strain recovery. At 377 K, when the stress is lower than 11 MPa, almost no mobility enhancement was observed. Once the stress crossed this threshold value, the mobility dramatically increased.  相似文献   

9.
A nonlinear Langevin equation (NLE) theory for the translational center-of-mass dynamics of hard nonspherical objects has been applied to isotropic fluids of rigid rods. The ideal kinetic glass transition volume fraction is predicted to be a monotonically decreasing function beyond an aspect ratio of two. The functional form of the decrease is weaker than the inverse aspect ratio. Vitrification occurs at lower volume fractions for corrugated tangent bead rods compared to their smooth spherocylinder analogs. The ideal glass transition signals a crossover to activated dynamics, which is estimated to be observable before the nematic phase boundary is encountered if the aspect ratio is less than roughly 25. Calculations of the glassy elastic shear modulus and absolute yield stress reveal a roughly exponential growth with volume fraction. The dependence of entropic barriers and mean barrier hopping times on concentration for rods of variable aspect ratios can be collapsed quite well based on a difference volume fraction variable that quantifies the distance from the ideal glass boundary. Full numerical solution of the NLE theory via stochastic trajectory simulation was performed for tangent bead rods, and the results were compared to their hard sphere analogs. With increasing shape anisotropy the characteristic length scales of the nonequilibrium free energy increase and the magnitude of the localization well and entropic barrier curvatures decreases. These changes result in a significant aspect ratio dependence of dynamical properties and time correlation functions including weaker intermediate time subdiffusive transport, stronger two-step decay of the incoherent dynamic structure factor, longer mean alpha relaxation time, and stronger wavevector-dependent decoupling of relaxation times and the self-diffusion constant. The theoretical results are potentially testable via computer simulation, confocal microscopy, and dynamic light scattering.  相似文献   

10.
Supercooled o-terphenyl has been the subject of many investigations including dielectric relaxation spectroscopy. Due to the low dielectric strength and the tendency to crystallize at elevated temperatures, a detailed shape analysis of the loss profile from the glass transition temperature Tg to approximately 1.2 Tg is not available for the neat glass former. Assessing the origin of the different temperature dependencies of translational and rotational motions in supercooled liquids and its possible connection to heterogeneity requires this knowledge regarding the possible changes in the relaxation-time distribution across the 100 s-100 ns relaxation-time range. This note provides this information for o-terphenyl on the basis of a master curve representation: time-temperature superposition applies with a constant stretching exponent of beta=0.5 in the range of interest.  相似文献   

11.
The investigation of the glass transition in materials that become too viscous or are difficult to prepare in a solid compact form, is not straightforward using dynamic mechanical analysis, DMA. In this work, metallic pockets are used to envelop samples in order to resolve the loss factor peak, tan δ, in the region of Tg. Experiments with indium were carried out at different heating rates in order to correct the temperature in such isochronal measurements. The proof of concept of the utility of such methodology was done by investigating the glass transition dynamics of poly(d,l-lactic acid), PDLLA, a biodegradable amorphous polyester widely investigated for biomedical applications. The glass transition peaks obtained at scanning rates below 4 °C min?1 shifted to the same temperature region after correction. DMA tests on PDLLA at different frequencies allowed construction of a relaxation plot where the glass transition dynamics followed Vogel–Fulcher–Tamman–Hesse behaviour. Inclusion complexes, ICs, of PDLLA with α-cyclodextrin were obtained, exhibiting a very organized arrangement at the nano-scale level. DMA experiments on the ICs powder packed in the metallic pocket revealed a loss factor peak located at a higher temperature as compared with PDLLA, indicating that the segmental mobility of the polymer chains is highly restricted in this supra-molecular organization.  相似文献   

12.
Dielectric relaxation spectroscopy (DRS) of poly(ε-caprolactone) with different draw ratios showed that the mobility of polymer chains in the amorphous part decreases as the draw ratio increases.The activation energy of the α process,which corresponds to the dynamic glass transition,increases upon drawing.The enlarged gap between the activation energies of the αprocess and the β process results in a change of continuity at the crossover between the high temperature a process and the α and β processes.At low drawing ratios the a process connects with the βprocess,while at the highest drawing ratio in our measurements,the a process is continuous with the a process.This is consistent with X-ray diffraction results that indicate that upon drawing the polymer chains in the amorphous part align and densify upon drawing.As the draw ratio increases,the α relaxation broadens and decreases its intensity,indicating an increasing heterogeneity.We observed slope changes in the α traces,when the temperature decreases below that at which τα ≈ 1 s.This may indicate the glass transition from the ‘rubbery’ state to the non-equilibrium glassy state.  相似文献   

13.
We analyzed the thermal crystallization, glass‐transition behavior, and mechanical properties of melt‐extruded poly(trimethylene terephthalate) (PTT) films to investigate their physical aging and annealing effects. The physical aging and annealing of PTT films had an influence on the glass‐transition temperature, recrystallization behavior, and mechanical properties. When samples were aged at an ambient temperature, the crystallization temperature decreased largely within 5 h, the heat of crystallization increased, and the breaking stress and breaking elongation increased. The glass‐transition temperature of annealed samples, which was obtained from differential scanning calorimetry and dynamic mechanical measurements, increased with increasing annealing temperature below 80 °C but decreased above that temperature. In addition, the glass‐transition temperature and modulus of annealed samples were largely affected by the annealing time; in particular, they increased sharply within 1 h on annealing at 50 °C. Consequently, the change in the glass‐transition temperature on annealing was ascribed to the fact that the molecular constraint due to recrystallization and the mobility of rigid amorphous PTT chains competed with each other, being dependent on the annealing temperature. The mechanical properties of aged samples were closely related to their cold‐crystallization behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1920–1927, 2001  相似文献   

14.
Summary: Semi crystalline and amorphous poly(lactic acid) (PLA) thin films exhibit different glass transition temperature and behaviour, as revealed by ellipsometry. For semi-crystalline poly(L-lactic acid) (PLLA) thin film (with crystalline content between 40 and 60%), the glass transition temperature (Tg) is found to decrease below a film thickness of 50 nm. This depression was interpreted in term of disentenglement effect which is likely to occur upon confining the amorphous PLA phase near a non interacting surface. New results performed on non completed films, i.e. isolated objects, also reveal the lower transition temperature, thus underlying the importance of the entanglement state of the polymer chains on their mobility. For amorphous PLA thin film, obtained from the L and D copolymer, two distinct glass transitions were observed, with the highest Tg attributed to the presence of some nano-phase domains, formed by a possible cooperation of the D and L blocks to form stereocomplexes sequences, within the film. Furthermore, if these Tg remained constant as film thicknesses decrease down to 50 nm, they were also found to slightly decrease for isolated objects, thus supporting the importance of the entanglement hypothesis on the glass transition.  相似文献   

15.
The bio and chemical physics of protein–polymer conjugates are related to parameters that characterize each component. With this work, it is intended to feature the dynamical properties of the protein–polymer conjugate myoglobin (Mb)–poly(ethyl ethylene phosphate), in the ps and ns time scales, in order to understand the respective roles of the protein and of the polymer size in the dynamics of the conjugate. Elastic and quasi‐elastic neutron scattering is performed on completely hydrogenated samples with variable number of polymer chains covalently attached to the protein. The role of the polymer length in the protein solvation and internal dynamics is investigated using two conjugates formed by polymers of different molecular weight. It is confirmed that the flexibility of the complex increases with the number of grafted polymer chains and that a sharp dynamical transition appears when either grafting density or polymer molecular weight are high. It is shown that protein size is crucial for the polymer structural organization and interaction on the protein surface and it is established that the glass properties of the polymer change upon conjugation. The results give a better insight of the equivalence of the polymer coating and the role of water on the surface of proteins.  相似文献   

16.
17.
Molecular mobility of the paracetamol amorphous form   总被引:3,自引:0,他引:3  
The purpose of this paper is to study the molecular mobility of paracetamol molecules in their amorphous state below the glass transition temperature (Tg) in order to evaluate the thermodynamic driving force which allows the amorphous form to recrystallize under different polymorphic modifications. Samples were aged at temperatures of -15, 0, 6, and 12 degrees C for periods of time from 1 h to a maximum of 360 h. The extent of physical aging was measured by a DSC study of enthalpy recovery in the glass transition region. The onset temperature of glass transition was also determined (Tg). Enthalpy recovery (deltaH) and change in heat capacity (deltaCp) were used to calculate the mean molecular relaxation time constant (tau) using the empirical Kohlausch-Williams-Watts (KWW) equation. Enthalpy recovery and onset glass transition temperature increased gradually with aging and aging temperatures. Structural equilibrium was reached experimentally only at an aging temperature of 12 degrees C (Tg-10 degrees C), according to the deltaH(infinity) results. The experimental model used is appropriate only at lower aging temperatures, while at higher ones the complexity of the system increases and molecular polymorphic arrangement could be involved. When structural equilibrium is experimentally reached, molecules can be arranged in their lowest energy state, and the polymorphic form I formation is the one preferred.  相似文献   

18.
本文利用椭偏仪研究了成膜方式对不同分子量聚苯乙烯(PS)超薄膜玻璃化转变行为的影响.发现PS超薄膜的玻璃化转变温度(Tg)随着厚度降低的幅度与其成膜方式、分子量有关.当PS膜低于一定厚度时,旋涂法制备的PS膜的Tg比相同厚度浇铸法制备的膜低,且二者Tg差值随着厚度的降低而增大.这二种膜Tg的差值和Tg发生偏离时膜的临界厚度随聚苯乙烯分子量的增加而增加.利用非辐射能量转移荧光光谱证实成膜方式主要是影响PS分子链在膜中的构象.旋涂法制备的PS膜相对于本体在近表面区域分子链的形变更大.分子量愈大,分子运动时内摩擦阻力愈大,近表面区域分子的残余应力愈大.由于强运动能力的活性层(空气/PS界面)对PS薄膜Tg的影响占主导,相同厚度下分子链愈伸展,残余应力越大,PS薄膜的Tg越低,导致成膜方式与分子量的影响也愈大.  相似文献   

19.
The present paper reports induced glass transition dynamics appeared in porous silica (PSi) and nonporous silica (NPSi) nanoparticles. The size of these spherical particles is 5–15 nm for PSi and 15–20 nm for NPSi. PSi shows two glass transitions (Tg1 and Tg2) on heating, whereas NPSi shows one glass transition (Tg). The NPSi shows Tg at a higher temperature than PSi. PSi shows an exothermic transition on cooling, whereas NPSi shows no transition on cooling. Both Tgs appeared in PSi show dynamic behavior with the existence of positive activation energy. Both Tgs are reversible in PSi, whereas NPSi shows only one and irreversible Tg. The observed glass transitions in PSi and NPSi follow the configuron percolation model and show thermodynamic quasi-equilibrium with percolation threshold (fc) <1. The silica nanoparticles show induced glass transitions because of the presence of weak hydrogen bonds (HB) and a weak van der Waal force present in PSi, whereas the lack of porosity in NPSi shows irreversible Tg with stronger HB. The porosity of PSi makes it more reactive and dynamic due to its capillary behavior and shows its applicability in medical sciences, whereas the stability of NPSi makes it important for industrial research.  相似文献   

20.
The effect of glass transition temperature, Tg, on the self-assembly of "honeycomb" microstructures on nonplanar substrates was probed by the synthesis of a library of core cross-linked star polymers with different arm compositions. Star polymers based on poly(dimethyl siloxane), poly(ethyl acrylate), poly(methyl acrylate), poly(tert-butyl acrylate), and poly(methyl methacrylate) were synthesized by the "arm first" strategy using atom-transfer radical polymerization. Reaction conditions were optimized, and a series of high molecular weight star polymers were prepared in high yield. The glass transition temperature of the star polymers ranged from -123 to 100 degrees C which allowed the suitability for the formation of porous honeycomb-like films via the "breath figure" technique on nonplanar surfaces to be investigated. All star compositions successfully formed ordered films on flat surfaces. However, only star polymer compositions with a Tg below 48 degrees C could form homogeneous honeycomb coatings on the surface of nonplanar substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号