首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cu(OH)_2 nanowires were prepared and incorporated into poly(vinylidene fluoride)(PVDF) to fabricate Cu(OH)_2-PVDF ultrafiltration(UF) membrane via immersion precipitation phase inversion process. The effect of Cu(OH)_2 nanowires on the morphology of membranes was investigated by X-ray photoelectron spectroscopy(XPS), Fourier transform infrared(FTIR) spectroscopy, atomic force microscopy(AFM), scanning electron microscopy(SEM) and X-ray diffraction(XRD) measurements. The results showed that all the Cu(OH)_2-PVDF membranes had wider fingerlike pore structure and better hydrophilicity, smoother surface than pristine PVDF membrane due to the incorporation of Cu(OH)_2 nanowires. In addition, water flux and bovine serum albumin(BSA) rejection were also measured to investigate the filtration performance of membranes. The results indicated that all the Cu(OH)_2-PVDF membranes had high water flux, outstanding BSA rejection and excellent antifouling properties. It is worth mentioning that the optimized performance could be obtained when the Cu(OH)_2 nanowires content reached 1.2 wt%. Furthermore, the membrane with 1.2 wt% Cu(OH)_2 nanowires showed outstanding oil-water emulsion separation capability.  相似文献   

2.
Cu(OH)2 nanowires with a diameter of 8–10 nm and lengths of tens of micrometers were fabricated in the basic solution by dropping simply NaOH solution into CuCl2 solution at ambient temperature. The formation mechanism of nanowires was discussed. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize the samples. This article was submitted by the authors in English.  相似文献   

3.
采用超声辅助接枝聚合技术,将甲基丙烯酸缩水甘油酯(GMA)接枝到聚偏氟乙烯(PVDF)膜表面,制备PVDF-g-GMA膜;再利用氨基诱导环氧基团发生开环反应,将苏氨酸(Thr)接枝到PVDF-g-GMA膜表面,制备了具有两性离子结构表面的PVDF-g-GMA-Thr膜。通过衰减全反射傅里叶变换红外光谱(ATR-FTIR)、X射线光电子能谱(XPS)、接触角测试仪、场发射扫描电子显微镜(FESEM)和牛血清白蛋白(BSA)过滤实验等系统研究了改性前后PVDF膜表面的化学组成、润湿性能、表面形貌和抗污染性能。研究结果表明,随着PVDF-g-GMA接枝Thr反应时间的增加,PVDF-g-GMA-Thr膜的亲水性能明显提高,接触角从90°降为0°,呈现出超亲水性能。同时PVDF-g-GMA-Thr膜的水通量明显提高,当Thr诱导开环反应时间为12 h时,PVDF-gGMA-Thr膜的水通量高达686 L/(m2·h),与PVDF原膜相比,水通量提高了204. 5%。在BSA的过滤测试中,与PVDF膜相比,PVDF-g-GMA-Thr膜呈现出良好的截留性能和抗污染性能,BS...  相似文献   

4.
A novel hydrophilic nanocomposite additive(TiO2-g-PNIPAAm) was synthesized by the surface modification of titanium dioxide(TiO2) with N-isopropylacrylamide(NIPAAm) via "graft-from" technique. And the nanocomposite membrane of poly(vinylidene fluoride)(PVDF)/TiO2-g-PNIPAAm was fabricated by wet phase inversion. The graft degree was obtained by thermo-gravimetric analysis(TGA). Fourier transform infrared attenuated reflection spectroscopy(FTIR-ATR) and X-ray photoelectronic spectroscopy(XPS) characterization results suggested that TiO2-g-PNIPAAm nanoparticles segregated on membrane surface during the phase separation process. Scanning electron microscopy(SEM) was conducted to investigate the surface and cross-section of the modified membranes. The water contact angle measurements confirmed that TiO2-g-PNIPAAm nanoparticles endowed PVDF membranes better hydrophlilicity and thermo-responsive properties compared with those of the pristine PVDF membrane. The water contact angle decreased from 92.8° of the PVDF membrane to 61.2° of the nanocompostie membrane. Bovine serum albumin(BSA) static and dynamic adsorption experiments suggested that excellent antifouling properties of membranes was acquired after adding TiO2-gPNIPAAm. The maximum BSA adsorption at 40 °C was about 3 times than that at 23 °C. The permeation experiments indicated the water flux recover ratio and BSA rejection ratio were improved at different temperatures.  相似文献   

5.
A silver nanoparticles-poly(carboxybetaine methacrylate)(AgNPs-PCBMA) nanocomposite was prepared on poly(vinylidene fluoride)(PVDF) membrane surface to improve its hydrophilicity and antifouling properties. Firstly, the PVDF membranes were grafted by PCBMA via physisorbed free radical grafting technique. Then Ag+ coordinated to the carbonyl group on PCBMA andsubsequently was reduced to silver nanoparticles. The hydrophilicity of the PVDF-gPCBMA/Ag membrane wasenhanced with the increasing fixed degree(FD) of AgNPs, and the original water contact angle of membrane was reduced to 33.97°. Additionally, water flux recovery ratio(FRR) andbovine serum albumin(BSA) rejection ratio of PVDF-g-PCBMA/AgNPs membrane wereimproved from 52% to 93.32% and 28.12% to 91.12%, respectively. Further, the PVDF-g-PCBMA/AgNPs membranes exhibited the more pronounced inhibition zone. The study demonstrated that compared with pure AgNPs or the PCBMA polymer brush, the synergistic effect of PCBMA and AgNPs made PVDF membranes havebetter hydrophilicity and anti-bacterialperformances.  相似文献   

6.
In this study, to improve the specific capacitance of graphene-based supercapacitor, novel quadri composite of G/PPy/MnOx/Cu(OH)2 was synthesized by using a facile and inexpensive route. First, a two-step method consisting of thermal decomposition and in situ oxidative polymerization was employed to fabricate graphene/polypyrrole/manganese oxide composites. Second, Cu(OH)2 nanowires were deposited on Cu foil. Afterwards, for the electrochemical measurements, composite powders were deposited on Cu(OH)2/Cu foil substrate as working electrodes. The synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. The XRD analysis revealed the formation of PPy/graphene, Mn3O4/graphene, and graphene/polypyrrole/MnOx. In addition, the presence of polypyrrole and manganese oxides was confirmed using FT-IR and Raman spectroscopies. Graphene/polypyrrole/MnOx/Cu(OH)2 electrode showed the best electrochemical performance and exhibited the largest specific capacitance of approximately 370 F/g at the scan rate of 10 mV/s in 6 M KOH electrolyte. In addition, other electrochemical measurements (charge–discharge, EIS and cyclical performance) of the G/Cu(OH)2, G/PPy/Cu(OH)2, G/Mn3O4/Cu(OH)2, and G/PPy/MnOx/Cu(OH)2 electrodes suggested that the G/PPy/MnOx/Cu(OH)2 composite electrode is promising materials for supercapacitor application.  相似文献   

7.
A novel hydrophilic nanocomposite additive (PVP-g-MMT), coupling of hydrophilic modifier, self-dispersant, and pore-forming agent (porogen), was synthesized by the surface modification of montmorillonite (MMT) with N-vinylpyrrolidone (NVP) via "grafting from" polymerization in the presence of H(2)O(2)-NH(3)·H(2)O as the initiator, and then the nanocomposite membrane of poly(vinylidene fluoride) (PVDF) and PVP-g-MMT was fabricated by wet phase inversion onto clean glass plates. The existence and dispersion of PVP-g-MMT had a great role on structures, morphologies, surface composition, and chemistry of the as-prepared nanocomposite membranes confirmed by varieties of spectroscopic and microscopic characterization techniques, all of which were the correlated functions of PVP-g-MMT content in casting solution. By using the dead-end filtration of protein aqueous solution, the performance of the membrane was evaluated. It was seen that all of the nanocomposite membranes showed obvious improvement of water flux and proper BSA rejection ratio, compared to the control PVDF membrane. Meanwhile, dynamic BSA fouling resistance and flux recovery properties were also greatly enhanced due to the changes of surface hydrophilicity and morphologies. All the experimental results indicated that the as-prepared PVDF nanocomposite membranes showed better separation performances than the control PVDF membrane. Hopefully, the demonstrated method of hydrophilic nanocomposite additive synthesis would be applied for commonly hydroxyl group-containing inorganic nanoparticles, which was favorable to fabricate hydrophilic nanoparticle-enhanced polymer membranes for water treatment.  相似文献   

8.
Negatively charged PVDF microfiltration membranes were prepared using direct sulfonation with chlorosulfonic acid. The effect of sulfonation on the surface chemical properties, morphology, pore size distribution, hydrophilicity, water uptake, pure water flux, fouling and rejection were investigated. As the sulfonation reaction time was furthered, the degree of sulfonation and ion-exchange capacity increased and the membranes became more hydrophilic due to introduction of sulfonyl groups to the membrane surface. Using X-ray photoelectron spectroscopy, the composition of sulfonyl group with respect to sulfur concentration increased with time. From the SEM and porosity measurements, both the untreated and treated membranes did not reveal a substantial change in its morphology. The pure water flux increased significantly having a decreasing intrinsic resistance trend with degree of sulfonation. Both fouling phenomena and rejection were enhanced, with fouling of charged poly(styrene sulfonic acid) molecules on the surface-modified membrane decreased and rejection values increased with increasing degree of sulfonation mainly due to the effective electrostatic repulsion between the negatively charged PSSA and the negatively charged membrane.  相似文献   

9.
Hydrophilic poly(vinylidene fluoride) (PVDF) nanocomposite ultrafiltration (UF) membranes with excellent antifouling and antibiofouling characteristics are fabricated by employing polyhexanide coated copper oxide nanoparticles (P–CuO NPs). The presence of P–CuO NPs is played a significant role in altering the PVDF membrane matrix and probed by XRD, FTIR, FESEM and contact angle analysis. The PVDF/P–CuO nanocomposite membranes exhibited an outstanding antifouling performance indicated by the superior pure water flux, effective foulant separation and maximum flux recovery ratio during UF experiments as a result of the formation of the hydrophilic and more porous membrane due to the uniform distribution of P–CuO NPs. Particularly, the PVDF/P–CuO-3 membrane showed higher PWF of 152.5 ± 2.4 lm−2h−1 and porosity of 64.5% whereas the lower contact angle of 52.5°. Further, it showed the higher rejection of 99.5 and 98.4% and the flux recovery ratio of 99.5 and 98.5% respectively for BSA and HA foulants, demonstrated its increased water permeation, foulant separation and antifouling behavior. Further, the decent antibacterial activity is showed by the PVDF/P–CuO nanocomposite membranes with the formation of halo-zone around the membrane when exposed to the bacterial medium demonstrated that, by this process an antibacterial water treatment membrane can be developed by simple phase inversion technique with good membrane stability.  相似文献   

10.
TiO_2/PVDF复合中空纤维膜的制备和表征   总被引:15,自引:0,他引:15  
采用相转化法制备了二氧化钛 (TiO2 ) 聚偏氟乙烯 (PVDF)复合中空纤维膜 .应用牛血清白蛋白截留实验、扫描电子显微镜、热重分析、X射线衍射分别对复合膜的分离性能、微观结构、热稳定性和晶相组成进行了分析 .结果表明复合膜的性能与纯PVDF膜的相比有显著的改善 ,其中对牛血清白蛋白的截留率从 3 2 7%提高到 86 6 7% ,单根纤维的断裂应力从 3 35MPa提高到 4 70MPa ,提高了 4 0 3% .氮气吸附实验测定的孔径分布进一步表明复合膜的孔径分布变窄 ,孔径变小 .  相似文献   

11.
To endow hydrophobic poly(vinylidene fluoride) (PVDF) membranes with reliable hydrophilicity and protein resistance, an amphiphilic hyperbranched-star polymer (HPE-g-MPEG) with about 12 hydrophilic arms in each molecule was synthesized by grafting methoxy poly(ethylene glycol) (MPEG) to the hyperbranched polyester (HPE) molecule using terephthaloyl chloride (TPC) as the coupling agent and blended with PVDF to fabricate porous membranes via phase inversion process. The chemical composition changes of the membrane surface were confirmed by X-ray photoelectron spectroscopy (XPS), and the membrane morphologies were measured by scanning electron microscopy (SEM). Water contact angle, static protein adsorption, and filtration experiments were used to evaluate the hydrophilicity and anti-fouling properties of the membranes. It was found that MPEG segments of HPE-g-MPEG enriched at the membrane surface substantially, while the water contact angle decreased as low as 49 degrees for the membrane with a HPE-g-MPEG/PVDF ratio of 3/10. More importantly, the water contact angle of the blend membrane changed little after being leached continuously in water at 60 degrees C for 30 days, indicating a quite stable presence of HPE-g-MPEG in the blend membranes. Furthermore, the blend membranes showed lower static protein adsorption, higher water and protein solution fluxes, and better water flux recovery after cleaning than the pure PVDF membrane.  相似文献   

12.
Polyvinylidene fluoride (PVDF) membranes were prepared via the phase inversion method from casting solutions containing PVDF, dimethylformamide (DMF), and polyvinylpyrrolidone (PVP) as pore former. PVP was used in the casting solution in a range of 0–5 wt % and extracted. The effect on membranes of using PVP in the casting process was analyzed by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, viscosity, and water permeability techniques. With an increase of PVP from 0 to 5 wt %, the PVDF casting solution viscosities increased from 858 to 1148 cP; the resulting PVDF membrane thickness increased; and the crystallinity of PVDF membranes decreased from 40.0 to 33.3%, which indicates that the addition of PVP inhibits the degree of crystallization in the PVDF membranes. SEM results revealed the shape and size of macropores in the membranes; these macropores changed after PVP addition to the casting solutions. The impact of structural changes on free-volume properties was evaluated using positron annihilation lifetime spectroscopy (PALS) studies. PALS analysis indicated no effect on the average radius (~3.4 Å) of membrane free-volume holes from the addition of PVP to the casting solution. However, the percentage of o-Ps pick-off annihilation intensity, I3, increased from 1.7 to 5.1% with increased PVP content. Further, increasing the PVP content from 0.5 to 5% resulted in an increased final pure water permeability flux. For instance, the 210 min flux for a 14% PVDF + 0.5% PVP membrane was found to be 3.3 times greater than a control membrane having the same PVDF concentration. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 589–598  相似文献   

13.
Poly(vinylidene fluoride) (PVDF) membranes were hydrophilic modified with hydroxyl group terminated hyperbranched poly(amine‐ester) (HPAE). Fourier transform infrared spectroscopy (FT‐IR) was used to study the chemical change of PVDF membranes. X‐ray photoelectron spectroscopy (XPS) indicated that some HPAE molecules were retained in PVDF membrane through polymer chain coiling. The presence of HPAE would improve the hydrophilicity of PVDF membrane. Scanning electron microscopy (SEM) was employed to characterize the morphology of different membranes. The thermodynamic stability for PVDF/DMAc/HPAE/Water system was characterized by the determination of the gelation values. Precipitation kinetics for PVDF/DMAc/HPAE/Water system was studied by precipitation time measurement. The water contact angle indicated that the hydrophilicity and the biocompatibility corresponding to protein adsorption of PVDF membrane were improved significantly after blending with hydrophilic HPAE molecules. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Novel poly(aryl ether sulfone ketone)s(PAESK) were synthesized from bisphenol A(BPA),9,9′-bis(4-hydroxyphenyl)fluorene(BHPF),4,4′-dichlorodiphenylsulfone(DCS) and 4,4′-difluorobenzophenone(DFB) via nucleophilic substitution polymerization,which were subsequently used to fabricate ultrafiltration membrane by phase-inversion method for high temperature condensed water treatment.The obtained high molecular weight co-polymers with fluorene group with good solubility and good thermal stability,can be easily cast into flexible,white and non-transparent flat films.The influence of molar ratio of BPA and BHPF on the properties of the prepared co-polymers and membranes was investigated in detail.SEM study of the morphology of the membranes indicated that the prepared membranes possessed homogeneous pores on the top surface and were sponge-like or finger-like in cross-section.Pure water flux of the membranes increased from 71.87 L·m~(-2)·h~(-1) to 247.65 L·m~(-2)·h~(-1),while the retention of BSA decreased slightly,and the water contact angle decreased from 82.1° to 55.6° with the PVP concentration from 0 wt% to 10 wt%.With increasing concentration of PVP,the mechanical properties of membranes decreased,while the thermal stability increased.The permeate flux measurement showed that the PAESK membrane had the potential for high temperature condensed water treatment.  相似文献   

15.
Flat sheet asymmetric membranes were fabricated with homogeneous solution of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) using N-methyl-2-pyrrolidone (NMP) as solvent via phase inversion method. PEGME (Poly ethylene glycol methyl ether) (Mn 5000) blend Humic Acid (HA), of different mole ratio was used as additive. Characterization of the membranes was done by Field emission scanning electron microscope (FESEM), Fourier Transform Infrared (FTIR) spectroscopy, Atomic force microscopy (AFM) and Differential scanning calorimetry (DSC) studies. Liquid-liquid displacement porosimetry (LLDP) study evaluated the morphological parameters, average pore size and pore size distribution. Bovine serum albumin (BSA) (MW - 68,000 Da) was used to study the antifouling effect and pore blocking mechanism of the membranes. The pure water flux (PWF), solute rejection and flux recovery ratio drastically increases for the PEGME blended HA membranes whereas the water contact angle decreases significantly. The pH responsiveness character of the prepared membranes altered the hydraulic permeability and rejection % at different pH. Finally, optimization of the variables contributing towards the PWF and BSA rejection of the desired membrane was performed using Design expert software 9.0 TRIAL through ANOVA (analysis of variance) using the combination of response surface methodology (RSM) and central composite design (CCD).  相似文献   

16.
new material of Cu(OH)2 nanostructures was prepared using cupric nitrate and sodium hydroxide as raw materials by the chemical precipitation method. The Cu(OH)2 nanostructures were characterized by scanning electron microscope, transmission electron microscopy, infrared spectrometer, and X-ray diffractometer. The results showed that the Cu(OH)2 nanostructures exhibited excellent uniform and dispersion at 40°C. A series of factors was investigated to effect the photocatalytic efficiency of methyl orange (MO), such as the concentration of Cu(OH)2 nanostructures, the reaction time of the Cu(OH)2 nanostructures, the initial concentration of MO, and so on. As a result, the Cu(OH)2 nanostructures exhibited excellent photocatalytic efficiency with the concentration of 20 mg L–1 Cu(OH)2 nanostructures, the initial concentration of MO was 15 mg L–1 and the stirring time was 70 min.  相似文献   

17.
Herein, functionalized graphene oxide (GO) was prepared by the covalent functionalization with amino acids (lysine, glycine, glutamic acid and tyrosine) in this study. Zeta potential results demonstrated that covalent functionalization of GO with amino acids was favourable for their homogeneous dispersion in water and organic solvents. Based on the higher absolute value of zeta potential and the better dipersion stability of GO-lysine, the PVDF/GO-lysine hybrid membranes were then prepared via the phase inversion induced by immersion precipitation technique. SEM images showed a better pore diameter and porosity distribution on the PVDF/GO-lysine membrane surface. The zeta potential absolute value of the PVDF/GO-lysine membrane surface was higher than that of the virgin PVDF membrane. Furthermore, the PVDF/GO-lysine membranes surface exhibited good hydrophilicity. The water flux of PVDF/GO-lysine membranes can reach to two times of that of the virgin PVDF membrane. And the BSA adsorbed amount on PVDF/GO-lysine surface was decreased to 0.82 mg/cm2 for PVDF/GO-lysine-8% membrane. Filtration experiment results indicated that the fouling resistance was significantly improved for the PVDF/GO-lysine membranes. As a result, lysine functionalized GO will provide a promising method to fabricate graphene oxide based hybrid membranes with effective antifouling property and hydrophilicity.  相似文献   

18.
《先进技术聚合物》2018,29(1):254-262
Membrane technology has been successfully applied for the removal of dyes from wastewater in the textile industry. A novel poly(vinylidene fluoride) (PVDF) membrane was prepared via blending with different dosages of Ag‐TiO2‐APTES composite for dyeing waste water treatment in our study. And the effect of Ag‐TiO2‐APTES blended into the PVDF membrane was discussed, including the rejection rate of methylene blue (MB) dye, membrane morphology, surface hydrophilicity, antibacterial activity, and a certain photocatalytic self‐cleaning performance. X‐ray diffraction and Fourier transform infrared characterization confirmed that Ag‐TiO2 was functionalized by amount of hydroxyl group (−OH) and amino group (NH−), which provided by APTES. Contact angle measurement certified that the hydrophilicity of the membrane surface increased, with the contact angle decrease to 61.4° compared with 81.8° of original PVDF membrane. MB rejection rate was also increased to 90.1% after addition of Ag‐TiO2‐APTES, and the rejection of original membrane was only 74.3%. The morphologies of membranes were observed by scanning electron microscope, which indicated that Ag‐TiO2‐APTES had a good dispersion in membrane matrix and also improved the microstructure of membranes. Besides, UV irradiation experiments were performed on the composite films contaminated by MB, and the result showed that Ag‐TiO2‐APTES nanoparticle provided PVDF membrane with a certain photodegradation capacity under UV irradiation. Moreover, antibacterial activity of the composite membrane was also demonstrated through antibacterial experiment, Escherichia coli as the representative bacteria. Perhaps, this research may provide a new way for PVDF blending modification.  相似文献   

19.
《Chemical physics letters》2002,350(3-4):220-223
Polycrystalline Cu(OH)2 nanowires with an average diameter of ca. 8 nm and lengths of up to hundreds of micrometers were synthesized by using a simple chemical route at ambient temperature. The crystallity, purity, morphology, and structure features of the as-prepared Cu(OH)2 nanowires were investigated by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The growth mechanism of the Cu(OH)2 nanowires were studied in detail.  相似文献   

20.
Metal–organic frameworks (MOFs) are made up of metal centers and organic binders with larger surface area and distinct pore structures. Particularly significant advancement in MOF membranes has been achieved in three different directions: preparation of MOF membranes with larger surface area, improving the membrane performance by surface modification, and its usage with added features. However, its significance has not been completely known and concluded yet. MOF membranes are used in a variety of membrane-based separation like gas permeation, nanofiltration, pervaporation, membrane distillation, etc. This research aims to synthesize MOFs (ZIF-8 and ZIF-67) and MOF membranes (ZIF-8/PVDF and ZIF-67/PVDF) and used them in the pervaporative separation of the methanol/water mixture. MOFs and MOF membranes were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetry analysis. Methanol/water mixtures were be used to study the performance of the prepared membranes. A study on the process parameters such as temperature (40, 45, 50, and 55°C), feed pressure (4, 8, 12, and 16 psi), and feed composition (10%, 20%, 30%, and 40% of water) was carried out to examine the effect of each process parameters for pure membrane. In contrast, Taguchi screening design was used to screen the most influential process variable. The optimized conditions based on Taguchi screening method were 55°C, 12 psi, and 40 %vol of water in feed. The obtained total flux of 425 L/m2h was observed for M3 membrane. As feed temperature increased, the total flux of all three membranes was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号