首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pore formation mechanism of β-crystalline polypropylene under stretching was investigated. The porosity of the samples increases rapidly with stretching, having a maximum at draw ratios around 2 and then decreases monotonically.An abrupt formation process of initial micropores at very low draw ratios was evidenced by in situ SAXS measurements. At the same time the phase transition from β-crystal to a-crystal proceeds slowly in the whole deformation process up to large draw ratios around 5. Comparative studies of a- and β-crystalline polypropylene samples before stretching indicate that in addition to difference in crystal forms the a- and β-crystalline polypropylene samples exhibit quite different morphological features. There are a lot of interfaces in β-crystalline polypropylene samples, which may have a lower density value and can be easily etched by argon ions and penetrated by small molecules. It was concluded from these experimental facts that the pore formation and crystal transition are two independent phenomena during the deformation of β-crystalline polypropylene samples, and phase transition from β-crystal to a-crystal could hardly be the origin of pore formation. A defect initiation mechanism was proposed to understand the pore formation behavior of β-crystalline polypropylenes.  相似文献   

2.
Fumed silica/bisphenol A dicyanate ester(BADCy)nanocomposites were prepared by introducing different contents of nano-sized fumed SiO2 into the BADCy matrix.Two different average primary particle diameters of 12 and 40 nm were chosen.Dibutyltindilaurate(DBTDL)catalyst was chosen to catalyze the cyanate ester group into triazine group via cyclotrimerization reaction.The SEM micrographs indicated that the fumed SiO2 particles were homogeneously dispersed in the poly(bisphenol A dicyanate)matrix by means of ultrasonic treatment and the addition of a coupling agent. The FTIR spectroscopy shows that,not only DBTDL catalyzes the polymerization reaction but also-OH groups of the SiO2 particles surface help the catalyst for the complete polymerization of BADCy monomer.The thermal stability of the cured BADCy can be improved by adequate addition of fumed SiO2.A slight increase in the dielectric constant and dielectric loss values were identified by testing the dielectric properties of the prepared nanocomposite samples.By increasing the SiO2 content,there was a slight increasing in the thermal conductivity values of the tested samples.The obtained results proved that the fumed silica/BADCy nanocomposites had good thermal and dielectrical properties and can be used in many applications such as in the thermal insulation field.  相似文献   

3.
《高分子科学》2019,37(12):1283-1289
The manufacturing process of poly(vinylidene fluoride) microporous films containing through flow channels and permeable to liquids has been elaborated. The process is based on polymer melt extrusion with subsequent stages of annealing, uniaxial extensions("cold" and "hot" drawing), and thermal stabilization. The effect of orientation parameters(melt draw ratio and extension degrees) on overall porosity, permeability, morphology, and content of polar piezoactive β-phase in crystalline structure of the films was investigated by filtration porosimetry, sorptometry, scanning electron microscopy, X-ray scattering, and mechanical properties measurements. It is shown that the through pores were formed by a percolation mechanism. It is observed that permeability and the β-phase content increased with the growth of extension degree at the pore formation stages but the portion of β-crystallites decreased with increasing melt draw ratio at extrusion, which permitted to regulate the combination of through permeability and piezoactivity values by variation of the preparation process parameters.  相似文献   

4.
The pore formation mechanism of,β-crystalline polypropylene under stretching was investigated. The porosity of the samples increases rapidly with stretching, having a maximum at draw ratios around 2 and then decreases monotonically. An abrupt formation process of initial micropores at very low draw ratios was evidenced by in situ SAXS measurements. At the same time the phase transition from ,β-crystal to α-crystal proceeds slowly in the whole deformation process up to large draw ratios around 5. Comparative studies of α- and ,β-crystalline polypropylene samples before stretching indicate that in addition to difference in crystal forms the α- and β-crystalline polypropylene samples exhibit quite different morphological features. There are a lot of interfaces in ,β-crystalline polypropylene samples, which may have a lower density value and can be easily etched by argon ions and penetrated by small molecules. It was concluded from these experimental facts that the pore formation and crystal transition are two independent phenomena during the deformation of β-crystalline polypropylene samples, and phase transition from ,β-crystal to α-crystal could hardly be the origin of pore formation. A defect initiation mechanism was proposed to understand the pore formation behavior of β-crystalline polypropylenes.  相似文献   

5.
Microporous poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)membranes following supercritical CO_2 induced phase separation process were prepared using four solvents.The solid electrolytes of PVDF-HFP were formed by microporous PVDF-HFP membranes filled and swollen by a liquid electrolyte.The effect of the solvents on the morphology and structure,electrolyte absorptions and lithium ionic conductivity of the activated membranes were investigated.It was approved that all the membrane had the simi...  相似文献   

6.
Novel poly(aryl ether sulfone ketone)s(PAESK) were synthesized from bisphenol A(BPA),9,9′-bis(4-hydroxyphenyl)fluorene(BHPF),4,4′-dichlorodiphenylsulfone(DCS) and 4,4′-difluorobenzophenone(DFB) via nucleophilic substitution polymerization,which were subsequently used to fabricate ultrafiltration membrane by phase-inversion method for high temperature condensed water treatment.The obtained high molecular weight co-polymers with fluorene group with good solubility and good thermal stability,can be easily cast into flexible,white and non-transparent flat films.The influence of molar ratio of BPA and BHPF on the properties of the prepared co-polymers and membranes was investigated in detail.SEM study of the morphology of the membranes indicated that the prepared membranes possessed homogeneous pores on the top surface and were sponge-like or finger-like in cross-section.Pure water flux of the membranes increased from 71.87 L·m~(-2)·h~(-1) to 247.65 L·m~(-2)·h~(-1),while the retention of BSA decreased slightly,and the water contact angle decreased from 82.1° to 55.6° with the PVP concentration from 0 wt% to 10 wt%.With increasing concentration of PVP,the mechanical properties of membranes decreased,while the thermal stability increased.The permeate flux measurement showed that the PAESK membrane had the potential for high temperature condensed water treatment.  相似文献   

7.
张书华  王成 《高分子科学》2016,34(5):542-551
MgAl-LDH(layered double hydroxides) were prepared with CO(NH_2)_2, NH_4 Cl and NH_3·H_2O by the coprecipitation method, respectively. Corresponding composite membranes were prepared by the coating method. LDHs were characterized by WAXS, CO_2-TPD and SEM. The morphology of the PVC/LDHs composite membranes were characterized by means of SEM. The thermal stability of the membranes was analyzed by air aging box and TGA-FTIR. The SEM results show that nano-particles can be compatible with poly(vinyl chloride)(PVC) matrix homogeneously by the stirring-ultrasound blend method with two steps. Furthermore, the air aging box results proved that MgAl-CO(NH_2)_2-LDH has the best effect on thermal stability of PVC. TGA-FTIR results show that MgAl-CO(NH_2)_2-LDH could adsorb more HCl that resulted from the degradation of PVC and improve the pyrolysis temperature of the first degradation stage by 15 K compared with PVC.  相似文献   

8.
姬相玲 《高分子科学》2013,31(9):1290-1298
A mixed system that includes poly(ethylene oxide) (PEO) and silica (SiO2) nanoparticles is prepared using two mixing methods. The interaction between PEO and the SiO2 nanoparticles in the dilute basic solution is investigated using the dynamic light scattering (DLS) and isothermal titration calorimetry (ITC) techniques. The DLS results show qualitatively that SiO2 nanoparticles interact with both random coils and aggregates of PEO through hydrogen bonding, and PEO-SiO2 complexes are formed. The degree of disaggregation of aggregates of PEO is readily adjusted by changing the concentration of SiO2 nanoparticle suspensions. Moreover, the ITC results also certify quantitatively the interaction between PEO and SiO2 nanoparticle, and give the evidence of formation of PEO-SiO2 complex.  相似文献   

9.
Muntha  Sedra Tul  Siddiq  Muhammad  Kausar  Ayesha  Khan  Anum 《高分子科学》2018,36(1):65-77
In this work,polysulfone/polyimide (PSf/PI) mixed matrix membranes were fabricated by reinforcement of modified zeolite (MZ) particles through solution casting method for investigation of antibacterial activity against two gram negative bacteria (Salmonella typhi,Klebsellapneumonia) and two gram positive bacteria (Staphylococcus aureus,Bacillus subtilis).The modified zeolite particles were incorporated to PSf and PI matrix and the influence of these particles on thermal,mechanical and structural properties was evaluated.The morphological evolution was investigated through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis,which revealed good compatibility between organic polymer matrix and inorganic filler.Mechanical stability was investigated by tensile testing while thermal analysis was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).This revealed improvement in thermal properties with increasing filler concentration from 1 wt% to 10 wt%.Structural analysis was successfully done using X-ray diffraction analysis (XRD) and Fourier transform infrared (FTIR) spectroscopy.Solvent content of fabricated mixed matrix membranes was observed to decrease while moving from more hydrophilic to less hydrophilic solvent.However,addition of filler content enhanced the porosity of fabricated membranes.The synthesized mixed matrix membranes exhibited good antibacterial activity and the highest activity was shown by PSf/PI/MZ mixed matrix membrane.Therefore,the combination effect of PSf,PI and MZ sufficiently enhanced the antibacterial activity of mixed matrix membranes.  相似文献   

10.
Heat shrinking material of γ-radiation erosslinked polyethylene is widely used for various application in industry. In this study, DSC, TMA, WAXD and density measurement techniques were used to investigate the influence of MI and thermal history of LDPE on the effectiveness of network formation. Based on the results of heat stretching and heat shrinkage tests, it is found that the formation of a network as perfect as possible is indispensable to the irradiated material if good heat shrinkage property is desired. To this end, quenching technique and polyethylene with appropriate MI must be used so that an effective radiation effect will be obtained with a minimum amount of radiation dose. In spite of that the mechanical property of the irradiated polyethylene in the rubbery state is basically in agreement with the classical expression of the theory of high elasticity, only about 90% shrinkage can be reached. Besides, the heat shrinkage temperature T_s and the % shrinkage Sare both related to the radiation dose.  相似文献   

11.
杜春慧 《高分子科学》2015,33(6):857-868
Polymerizable ionic liquid copolymer P(MMA-co-BVIm-Br) was synthesized by radical polymerization technique, and characterized by Fourier transform infrared spectrometry(FTIR), 1H Nuclear magnetic resonance(1H-NMR) and gel permeation chromatography(GPC). The resulting copolymer was used to prepare poly(vinylidene fluoride)(PVDF) blend membranes via a phase inversion method. The effects of the copolymer on the polymorphism, surface wettability and zeta potential(ζ) of the blend membranes were investigated by ATR-FTIR, contact angle instrument and zeta potential analyzer. Scanning electron microscopy(SEM and SEM-EDS) was also applied to investigate the morphology and the surface element changes of the fabricated membranes. The results indicated that P(MMA-co-BVIm-Br) copolymer existed on the surface of the membrane which made the blend membrane have a positive surface during the experimental p H range. The copolymer was also in favor of the formation of β crystal phase in PVDF membranes. The contact angle experiment indicated that P(MMA-co-BVIm-Br) copolymer could switch the wettability of the blend membranes from hydrophilic to hydrophobic by exchanging Br-anion with PF-6. Compared with pure PVDF membranes, the water flux and water recovery flux of the blend membranes were enhanced obviously. The results from the flux recovery ratio(FR) and total fouling ratio(Rt) all suggested that the blend membranes had good anti-fouling properties.  相似文献   

12.
Zeolitic imidazolate framework-67(ZIF-67) was synthesized on the surface of cellulose nanofibers(CNFs)in methonal to address the problems of unhomogeneous pore size and pore distribution of pure CNF membrane.A combination of Energy Dispersive X-Ray Spectroscopy(EDS),X-ray photoelectron spectroscopy(XPS) and X-ray powder diffraction(XRD) patterns were used to determine the successful synthesis of ZIF-67@CNFs.The size of the ZIF-67 particles and pore size of the ZIF-67@CNF membrane were50-200 nm and 150-350 nm, respectively.The prepared ZIF-67@CNF membrane exhibited excellent thermal stability,lower thermal shrinkage and high surface wettability.The discharge capacity retention of the Li-ion batteries(LIBs) made with ZIF-67@CNF,glass fiber(GF),CNF and commercial polymer membranes after 100 th cycle at 0.5 C rate were 88.41%,86.22%,83.27%,and 81.03%,respectively.LIBs with ZIF-67@CNF membrane exhibited a better rate capability than these with other membranes.No damage of porous structure or peel-off of ZIF-67 was observed in the SEM images of ZIF-67@CNF membrane after100 th cycle.The improved cycling performance,rate capability,and good electrochemical stability implied that ZIF-67@CNFs membrane can be considered as a good alternative LIB separator.  相似文献   

13.
Oleic acid (OA)-modified SiO2 (OA-m-SiO2) nanoparticles were prepared using surface modification method. Infrared spectroscopy (IR) was used to investigate the structure of the OA-m-SiO2 nanoparticles, and the result showed that OA attached onto the surface of SiO2 nanoparticles through esterification. Effect of OA concentration on the dispersion stability of OA-m-SiO2 in heptane was also studied, and the result indicated that OA-m-SiO2 nanoparticles were dispersed in heptane more stably than the unmodified ones. OA-m-SiO2 nanoparticles can also be dispersed in polypropylene (PP) matrix in nano-scale. The effect of OA-m-SiO2 on crystallization of PP was studied by means of DSC. It was found that the introduction of OA-m-SiO2 resulted in significant increase in the crystallization temperature, crystallization degree and crystallization rate of PP, and OA-m-SiO2 could effectively induce the formation of β-crystal PP. Effect of OA-m-SiO2 content on mechanical properties of PP/OA-m-SiO2 nanocomposites was also studied. The results show that OA-m-SiO2 can significantly improve the mechanical properties of PP.  相似文献   

14.
The preparation process of γ-A12O3 nanofiltration membranes were studied by N2 absorption and desorption test and retention rate vs thickness gradient curve method. It was found that template and thermal treatment were key factors for controlling pore size and its distribution.Under the optimized experimental conditions, the BJH (Barret-Jovner-Halenda) desorotion average pore diameter, BJH desorption cumulative volume of pores and BET (Brunauer-Emmett-Teller)surface area of obtained membranes were about 3.9 nm, 0.33 cm3/g and 245 m2/g respectively, the pore size distribution was very narrow. Pore size decreased with the increasing of thickness and no evident change after the dense top layer was formed. The optimum thickness can be controlled by retention rate vs thickness gradient curve method.  相似文献   

15.
Cu(OH)2 nanowires were prepared and incorporated into poly(vinylidene fluoride) (PVDF) to fabricate Cu(OH)2-PVDF ultrafiltration (UF) membrane via immersion precipitation phase inversion process.The effect of Cu(OH)2 nanowires on the morphology of membranes was investigated by X-ray photoelectron spectroscopy (XPS),Fourier transform infrared (FTIR) spectroscopy,atomic force microscopy (AFM),scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements.The results showed that all the Cu(OH)2-PVDF membranes had wider fingerlike pore structure and better hydrophilicity,smoother surface than pristine PVDF membrane due to the incorporation of Cu(OH)2 nanowires.In addition,water flux and bovine serum albumin (BSA) rejection were also measured to investigate the filtration performance of membranes.The results indicated that all the Cu(OH)2-PVDF membranes had high water flux,outstanding BSA rejection and excellent antifouling properties.It is worth mentioning that the optimized performance could be obtained when the Cu(OH)2 nanowires content reached 1.2 wt%.Furthermore,the membrane with 1.2 wt% Cu(OH)2 nanowires showed outstanding oil-water emulsion separation capability.  相似文献   

16.
in situ Fibril formation of polyamide-6(PA6)in isotropic polypropylene(iPP)was first fabricated using a slit die extrusion and hot stretching process.Then the prepared materials were subjected to injection molding in the temperature range higher than the melting temperature of iPP but lower than that of PA6.The obtained injection-molded samples were characterized via scanning electron microscopy(SEM),differential scanning calorimetry(DSC)and two-dimensional wide- angle X-ray scattering(2D-WAXS).Mechanical properties were also investigated.The SEM result shows that the optimum fibril formation could be only achieved in the range of 20 wt% to 30 wt% of PA6 content for the studied system.The fibril morphology changes along the sample thickness in the injection-molded bars.The fibril morphology in the skin layer was better than that in the core layer.2D-WAXS results showed that the orientation of PP decreased with the increase of PA6 content,which indicated that the orientation of PP was confined by PA6 fibrils.Combined consideration of mechanical properties and morphology indicates that only PP/PA6 composites with 20 wt% of PA6 content show better properties because of the better fibril morphology and PP chain orientation.  相似文献   

17.
闫寿科 《高分子科学》2014,32(4):509-518
Matrix/fiber composites of β-form isotactic polypropylene(iPP) matrix and α-iPP or PA6 fibers were prepared by laminating technique under different preparation temperatures. The mechanical properties and interfacial morphologies of these composites were studied by tensile test, optical microscopy and scanning electron microscopy, respectively. The experimental results show that the tensile yield load and tensile modulus of β-iPP/PA6 matrix/fiber systems increased significantly at the expense of elongation at break. These mechanical properties show essentially no dependence on the sample preparation temperature. On the other hand, the mechanical properties of iPP matrix/fiber single polymer composites depend strongly on the sample preparation temperature. At low sample preparation temperature, e.g., 172 ℃, the solid α-iPP fiber induces α-iPP crystallization, leading to the formation of α-iPP transcrystalline layer around the fiber. This results in a remarkable increment of the tensile yield load and tensile modulus. The elongation at break is also much better than that of the iPP/PA6 matrix/fiber system. It reflects a better interfacial adhesion of the single polymer composite compared with the iPP/PA6 composite. At higher sample preparation temperature, e.g., 174 ℃ or 176 ℃, the partial surface melting of the oriented fiber allows interdiffusion of iPP molecular chains in the molten fiber and matrix melt. The penetration of matrix chains into the molten iPP fiber results in some iPP molecular chains being included partially in the recrystallized fiber and the induced β-transcrystalline layers. This kind of configuration leads to an improvement of interfacial adhesion between the fiber and matrix, which causes a simultaneous increase of the tensile yield load, tensile modulus and elongation at break of β-iPP.  相似文献   

18.
李斌 《高分子科学》2015,33(2):318-328
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.  相似文献   

19.
As amyloid β (Aβ) is at the centre of pathogenesis of Alzheimer's disease (AD), Aβ aggregate-specific probes for in vivo studies of Aβ are potentially important for the early diagnosis and the assessment of new treatment strategies in the AD brain by noninvasive imaging. Several series of compounds derived from Congo red (CR) and Thioflavin T (ThT) have been evaluated as potential probes for the Aβ imaging. They include a diversity of core structures contributing to their affinities to Aβ. Small-molecule inhibi- tors were known to inhibit the formation of Aβ oligomers and fibrils. This inhibition has to be performed in such a way that these inhibitors bind to Aβ in the binding channel where Aβ-binding probes should sit. Therefore, several of them were used as novel core structures to develop Aβ probes, with their de- rivatives exhibiting good Aβ affinities. This approach will facilitate the design of a variety of candidates for Aβ probe molecules and anti-aggregation-therapeutic drugs. Moreover, the finding of Aβ probes with diverse core structures recognized by binding sites on Aβs will likely provide a promising per- spective for the design of 99mTc-labeled probe-derived molecules.  相似文献   

20.
Branch length and density have critical effects on membrane performances;however,it is regarded to be traditionally difficult to investigate the relationship due to the uncontrolled membrane modification methods.In this study,zwitterionic polymer with controlled grafting branch chain length (degree of polymerization) and grafting density (grafting chains per membrane area) was tethered to the microporous polypropylene membrane surface based on the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization technique with click reaction.The modified membranes were tested by filtrating protein dispersion to highlight the correlations of branch chain length and grafting density with the membrane permeation performances.The pure water flux,the flux recovery ratio are positively and significantly,and the irreversible fouling negatively and significantly correlated with grafting density.These results demonstrate that the larger the coverage of the membrane with poly{[2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl) ammonium hydroxide} (PMEDSAH),the higher the pure water flux and the higher the flux recover ratio,and the lower the irreversible fouling,which shows that high grafting density is favorable to fouling reducing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号