首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The crystallization behavior of syndiotactic polystyrene(s PS) γ form undergoing annealing at various temperatures was investigated using the thermodynamic phase diagram based on Strobl's crystallization theory. On the basis of the differential scanning calorimetric results, it was observed that γ form melt-recrystallization occurred at a higher temperature with the increasing lamellar thickness, which resulted from the pre-annealing at the elevating temperature after acetone induced crystallization. Further temperature dependent small-angle X-ray scattering(SAXS) measurement revealed the evolution of the γ form lamellae upon heating until phase transition, involving three different regimes: lamellae stable region(25-90 °C), melt-recrystallization region(90-185 °C) and pre-phase transition region(185-195 °C). As a result, recrystallization line, equilibrium recrystallization line and melting line were developed for the s PS γ form crystallization process. Since the melt of γ form involved a γ-to-α/β form phase transition, the melting line was also denoted as the phase transition line in this special case. Therefore, the equilibrium crystallization temperature and melting(phase transition) temperatures were determined at around 390 and 220 °C on the basis of the thermodynamic phase diagram of the s PS γ form.  相似文献   

2.
Poly(vinylidene fluoride) (PVDF) exhibits pronounced polymorphs.Its γ phase is attractive due to the electroactive properties.The γ-PVDF is however difficult to obtain under normal crystallization condition.In a previous work,we reported a simple melt-recrystallization approach for producing y-phase rich PVDF thin films through selective melting and subsequent recrystallization.We reported here another approach for promoting the αγ'phase transition to prepare γ-phase rich PVDF thin films.To this end,a stepwise crystallization and subsequent annealing process was used.The idea is based on a quick generation of a large amount of α-PVDF crystals with some of their γ-PVDF counterparts at suitable crystallization temperature and then annealing at a temperature above the crystallization temperature for enhancing the molecular chain mobility to overcome the energy barrier of phase transition.It was found that crystallizing the PVDF melt first at 152 ℃ for4 h,then quenching to room temperature and finally annealing the sample at 160 ℃ for 100 h was the most efficient to produce γ-PVDF rich films.This is related to the melting and recrystallization of the α-PVDF crystals produced during quenching in the annealing process at 160 ℃,which favors the formation of γ-PVDF crystals for triggering the αγ'phase transition.  相似文献   

3.
Poly(vinylidene fluoride)(PVDF) exhibits pronounced polymorphs. Its γ phase is attractive due to the electroactive properties. The γ-PVDF is however difficult to obtain under normal crystallization condition. In a previous work, we reported a simple melt-recrystallization approach for producing γ-phase rich PVDF thin films through selective melting and subsequent recrystallization. We reported here another approach for promoting the αγ′ phase transition to prepare γ-phase rich PVDF thin films. To this end, a stepwise crystallization and subsequent annealing process was used. The idea is based on a quick generation of a large amount of α-PVDF crystals with some of their γ-PVDF counterparts at suitable crystallization temperature and then annealing at a temperature above the crystallization temperature for enhancing the molecular chain mobility to overcome the energy barrier of phase transition. It was found that crystallizing the PVDF melt first at 152 °C for 4 h, then quenching to room temperature and finally annealing the sample at 160 °C for 100 h was the most efficient to produce γ-PVDF rich films. This is related to the melting and recrystallization of the α-PVDF crystals produced during quenching in the annealing process at 160 °C, which favors the formation of γ-PVDF crystals for triggering the αγ′ phase transition.  相似文献   

4.
门永锋 《高分子科学》2014,32(9):1210-1217
Phase transition from form Ⅰ to form Ⅲ in syndiotactic polypropylene crystallized at different conditions during tensile deformation at different temperatures was investigated by using in situ synchrotron wide angle X-ray diffraction technique. In all cases, the occurrence of this phase transition was observed. The onset strain of this transition was found to be crystalline thickness decided by crystallization temperature and drawing temperature dependent. The effect of drawing temperature on this phase transition is understood by the changes in mechanical properties with temperature. Moreover, crystalline thickness dependency of the phase transition reveals that this form Ⅰ to from Ⅲ phase transition occurs first in those lamellae with their normal along the stretching direction which have not experienced stress induced melting and recrystallization.  相似文献   

5.
Phase transition from form Ⅰto form Ⅲ in syndiotactic polypropylene crystallized at different conditions during tensile deformation at different temperatures was investigated by using in situ synchrotron wide angle X-ray diffraction technique. In all cases, the occurrence of this phase transition was observed. The onset strain of this transition was found to be crystalline thickness decided by crystallization temperature and drawing temperature dependent. The effect of drawing temperature on this phase transition is understood by the changes in mechanical properties with temperature. Moreover, crystalline thickness dependency of the phase transition reveals that this form I to from III phase transition occurs first in those lamellae with their normal along the stretching direction which have not experienced stress induced melting and recrystallization.  相似文献   

6.
陈尔强 《高分子科学》2013,31(6):946-958
Crystal orientation and melting behavior of poly(ε-caprolactone) in a diblock copolymer of poly(ε-caprolactone)-block-poly(2,5-bis[4-methoxyphenyl]oxycarbonyl)styrene) (PCL-b-PMPCS) was investigated. The degrees of polymerization of the PCL and PMPCS block are 200 and 98, respectively. With the PMPCS in a columnar liquid crystalline phase, the diblock is rod-coil one, which exhibits a lamellar phase morphology with the PCL layer thickness of 15.2 nm. Since the glass transition temperature of PMPCS block is much higher than the melting temperature of PCL, the crystallization of PCL is in a one-dimensionally "hard" confinement environment. Mainly on the basis of two-dimensional wide-angle X-ray diffraction experiments, we identified the orientation of PCL isothermally crystallized at various crystallization temperatures (Tcs). At high Tcs (Tc≥10℃), the c-axis of the PCL crystal is along the layer normal of the microphase-separated sturcture. Decreasing Tc can result in the tilting of PCL c-axis with respect to the layer normal. The lower the Tc is, the more the c-axis inclines. Meanwhile, the b-axis of PCL remains perpendicular to the layer normal. At a very low Tc of -78℃, the orientation of the PCL crystals is completely random. For the samples isothermally crystallized at Tc≤10℃, double melting behavior can be observed. While the low temperature endotherm reflects the melting of the crystals originally formed at the Tc applied, the high temperature one is associated with the crystals subjected to the process of recrystallization/reorganization upon heating due to the annealing effect.  相似文献   

7.
于建 《高分子科学》2011,29(3):308-317
An aryl dicarboxylic acid amide compound TMB-5 is an efficientβ-form nucleating agent for isotactic polypropylene(iPP).Because of the solubility of TMB-5,superstructure and morphology of iPP crystals changed with melting conditions.Effects of final heating temperature(T_f)on heterogeneous nucleation of iPP/TMB-5 were investigated.It was discovered that the crystallization temperature increased with decreasing T_f value.The optical microscopic images indicated that when TMB-5 partially dissolved in iPP melt,the remaining(non-dissolved)TMB-5 facilitated the recrystallization of dissolved nucleating agent from the melt,which promoted crystallization.Complete solubility of nucleating agent caused the decreasing efficiency.TMB-5 recrystallized in the form of tiny needles,whose aggregates induced dendritic iPP crystals.  相似文献   

8.
In this work,the crystallization of immiscible polypropylene(PP)/polybutene-1(PB)blends,in particular the effect of crystal morphology of PP(HTC,high Tm component)on the subsequent crystallization behavior of PB(LTC,low Tm component)was studied.Herein,we firstly indicated that PP/PB blends were not completely compatible but characterized as the LCST-like phase diagram above the melting temperature of PP.Crystallization of PP at different crystallization temperatures brought about different PP crystal morphologies and PB was segregated and confined at different locations.Much larger-sized domain of PB component appeared in PP spherulites resulting from the effects of non-negligible phase separation and the slower PP crystallization rate as PP crystallized at high temperature.As temperature continued to fall below Tm of PB,the fractionated and confined crystallization of PB occurred in the framework of PP spherulites,reflected by the decreased crystallization temperature(Tc)of PB and the formation of form I′beside form II.Notably,if PP previously crystallized at high Tc,fractionated crystallization of PB became predominant and confined crystallization of PB became weak due to the much wider droplet-size distribution of PB domains.  相似文献   

9.
门永锋 《高分子科学》2013,31(9):1218-1224
Demixing and colloidal crystallization in the mixture of charge stabilized colloidal poly(methyl methacrylate) particles and soluble poly(ethylene oxide) were investigated by means of synchrotron small-angle X-ray scattering (SAXS) technique. Phase diagram of the mixture was obtained based on visual inspection and SAXS results. The phase behavior is determined as a function of the concentration of the polymer as well as the volume fraction of the colloidal particles. The system shows a one phase region when the concentration of the polymer is low, whereas a two-phase region is present when the concentration of the polymer is larger than a critical concentration at certain volume fraction of the colloids. Interestingly, a face centered cubic colloidal crystalline structure was formed under certain conditions, which has been rarely observed in experiments of colloid-polymer mixtures with competing interactions.  相似文献   

10.
In this study, a series of monodispersed poly(L-lactide)(PLLA) were synthesized by the ring-opening polymerization with Schiff base aluminum catalyst, and the effects of the number-average molecular weight(Mn) on the crystallization and melting behaviors of PLLA were investigated by differential scanning calorimetry(DSC) and wide-angle X-ray diffraction(WAXD). The total crystallization rate of PLLA was Mn-dependent, which reached the maximum value for PLLA with Mn of 18.6 kg/mol. In addition, when Mn of PLLA was 18.6 kg/mol, the melting enthalpy(ΔHm) showed a maximum value(87.1 J/g), which was the highest reported value till now. The critical temperature for change of crystal formation from ?-form to ?-form crystals increased in the isothermal crystallization process with Mn increasing. In the reheating procedure, high-Mn PLLA demonstrated a small exothermal peak prior to the dominant melting peak, corresponding to crystal transition from ?- to ?-form, but low-Mn PLLA didn't show the peak of crystal transition. These different crystallization and melting behaviors were attributed to the different chain mobility of PLLA with different Mn.  相似文献   

11.
In this study,the poly(D-lactide)-block-poly(butylene succinate)-block-poly(D-lactide)(PDLA-b-PBS-b-PDLA)triblock copolymers with a fixed length of PBS and various lengths of PDLA are synthesized,and the crystallization behaviors of the PDLA and PBS blocks are investigated.Although both the crystallization behaviors of PBS and PDLA blocks depend on composition,they exhibit different variations.For the PDLA block,its crystallization behaviors are mainly influenced by temperature and block length.The crystallization signals of PDLA block appear in the B-D 2-2 specimen,and these signals get enhanced with PDLA block length.The crystallization rates tend to decrease with increasing PDLA block lendth during crystallizing at 90 and 100°C.Crystallizing at higher temperature,the crystallization rates increase at first and then decrease with block length.The crystallization rates decrease as elevating the crystallization temperature.The melting temperatures of PDLA blocks increase with block lengths and crystallization temperatures.For the PBS block,its crystallization behaviors are mainly controlled by the nucleation and confinement from PDLA block.The crystallization and melting enthalpies as well as the crystallization and melting temperatures of PBS block reduce as a longer PDLA block has been copolymerized,while the crystallization rates of the PBS block exhibit unique component dependence,and the highest rate is observed in the B-D 2-2 specimen.The Avrami exponent of PBS crystallites is reduced as a longer PDLA block is incorporated or the sample is crystallized at higher temperature.This investigation provides a convenient route to tune the crystallization behavior of PBS and PLA.  相似文献   

12.
The structural evolutions of LLDPE-LMW/HMW blend during uniaxial deformation at temperatures of 80 and 120 ℃ were investigated by the in situ synchrotron radiation small-and wide-angle X-ray scattering(SR-SAXS/WAXS). The magic sandwich echo(MSE) sequence was used to detect a virtually dead-time-free induction decay(FID) for solid-state NMR analysis. The thermal property of the blend was first checked by DSC,and the temperature dependence of the overall crystallinity was obtained by MSE-FID. The onset melting temperature is determined to be 116 ℃(DSC), and the enhanced π-flip motions in the crystalline domains are clearly observed at T60 ℃ by MSE-FID. For deformation at 80 ℃, the lamellae become staggered in the strain-softening region as shown by the four-point SAXS pattern, whereas further deformation leads to the melting-recrystallization in the strain-hardening region. For deformation at 120 ℃, the six-point SR-SAXS signal appears just after the four-point SR-SAXS signal, which indicates the formation of new lamellae along deformation direction. In addition, no phase transition occurs in the whole deformation process at both temperatures. Current work shows the detailed temperature dependence microstructural evolution of LLDPELMW/HMW blend. This is expected to provide more structural information for correlating microscopic structure with macroscopic mechanical performance.  相似文献   

13.
牛艳华 《高分子科学》2016,34(9):1117-1128
Crosslinking reactions of high density polyethylene with low peroxide concentrations ranging from 0.1 wt% to 1.0 wt% at temperatures of 170, 180 and 190 ° C were monitored by rheological measurements. A critical gel forms at the peroxide concentration of 0.2 wt%, where the transition from long chain branching generation to crosslinking network formation could occur. Rheokinetics of crosslinking can be fitted well by Ding-Leonov's model. The curing rate k_2 at the earlier stage exhibits about 3 times acceleration per 10 °C with increasing temperature, while the equilibrium modulus G′ at the fully cured stage is almost independent of temperature. Influences of crosslinking on the subsequent crystallization behaviors were detected by DSC measurements. Above the critical gel concentration, crystallization is largely retarded as evidenced by the lower crystallization temperature Tc and crystallinity X_c due to the network formation. The secondary crystallization valley located at the temperature near 80 °C can be observed above the critical concentration, which becomes more evident with the increasing peroxide concentration and curing temperature. This phenomenon provides another evidence of crystallization retardation by the crosslinking network.  相似文献   

14.
王海军 《高分子科学》2015,33(2):349-361
The miscibility, isothermal crystallization kinetics and morphology of the poly(vinylidene fluoride)(PVDF)/poly(ethylene adipate)(PEA) blends have been studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy(SEM). A depression of the equilibrium melting point of PVDF was observed. From the melting point data of PVDF, a negative but quite small value of the interaction parameter ?PVDF-PEA is derived using the Flory-Huggins equation, implying that PVDF shows miscibility with PEA to some extent. Nonisothermal and isothermal crystallization kinetics suggest that the crystallization rate of PVDF decreases with increasing the amount of PEA, and a contrary trend was found when PEA crystallizes with the increase of the amount of PVDF. It was further disclosed that the blend ratio and crystallization temperature affect the texture of PVDF spherulites greatly, which determines the subsequent crystallization of PEA. At high temperatures, e.g. 150 ℃, the band spacing of PVDF spherulites increases with the addition of PEA content and the spherulitic structure becomes more open. In this case, spherulitic crystallization of PEA is not observed for all blend compositions. At low temperatures, e.g. 130 ℃, for the PEA-rich blends, the interpenetrated structures are eventually formed by the penetration of the spherulites of PEA growing within the pre-existing PVDF spherulites.  相似文献   

15.
The crystalline phase transition of aliphatic nylon 10/10 has been investigated on the basis of the simultaneous measurement of wide-angle and small-angle X-ray scatterings, the infrared spectral measurement and the molecular dynamics calculation. An interpretation of infrared spectra taken for a series of nylon samples and the corresponding model compounds was successfully made, allowing us to assign the infrared bands of the planar-zigzag methylene segments reasonably. As a result the methylene segmental parts of molecular chains were found to experience an order-to-disorder transition in the Brill transition region, where the intermolecular hydrogen bonds are kept alive although the bond strength becomes weaker at higher temperature. The small-angle X-ray scattering data revealed a slight change in lamellar stacking mode in the transition region. The crystal structure has been found to change more remarkably in the temperature region immediately below the melting point, where the conformationally disordered chains experienced drastic rotational and translational motions without any constraints by hydrogen bonds, and the lamellar thickness increased largely along the chain axis. These experimental results were reasonably reproduced by the molecular dynamics calculation performed at the various temperatures.  相似文献   

16.
The wide-angle X-ray diffraction (WAXD) patterns of isothermally crystallized Nylon 1212 show that γ-form crystals form below 90℃ and the α-form crystals can exist above 140℃. In the temperature range of 90-140℃, the α-form and γ-form crystals coexist. Variable-temperature WAXD exhibits that the nylon 1212 γ-form does not show crystal transition on heating, while α-form isothermally crystallized at 160℃ exhibits Brill transition at a little higher than 180℃ on heating. The multiple melting behaviors of Nylon 1212 isothermally crystallized from melt come from a complex mechanism of different crystal structures, dual lamellar population and melting-recrystallization. In polarized optical microscope (POM) observations, Nylon 1212 isothermally crystallized at 175℃ shows the ringed banded spherulites. However, at temperatures below 160℃ the ringed banded image disappears, and cross-extinct spherulites are formed.  相似文献   

17.
Short chain branching has been characterized using thermal fractionation, a stepwise isothermal crystallizationtechnique, followed by a melting analysis scan using differential scanning calorimetry. Short chain branching distributionwas also characterized by a continuous slow cooling crystallization, followed by a melting analysis scan. Four differentpolyethylenes were studied: Ziegler-Natta gas phase, Ziegler-Natta solution, metallocene, constrained-geometry single sitecatalyzed polyethylenes. The branching distribution was calculated from a calibration of branch content with meltingtemperature. The lamellar thickness was calculated based on the thermodynamic melting temperature of each polyethyleneand the surface free energy of the crystal face. The branching distribution and lamellar thickness distribution were used tocalculate weight average branch content, mean lamellar thickness, and a branch dispersity index. The results for the branchcontent were in good agreement with the known comonomer content of the polyethylenes. A limitation was that high branchcontent polyethylenes did not reach their potential crystallization at ambient temperatures. Cooling to sub-ambient wasnecessary to equilibrate the crystallization, but melting temperature versus branch content was not applicable after cooling tobelow ambient because the calibration data were not performed in this way.  相似文献   

18.
李良彬 《高分子科学》2014,32(9):1224-1233
In this study, recovery processes of isotactic polypropylene(iPP) melted spherulites at 135 °C after melting at higher temperatures(170 °C–176 °C) were investigated with polarized optical microscopy and Fourier transform infrared spectroscopy. The recovery temperature was fixed to exclude the interference from heterogeneous nuclei. After melting at temperatures between 170 °C and 174 °C, the melted spherulite could recover back to the origin spherulite at low temperatures. Interestingly, a distinct infrared spectrum from iPP melt and crystal was observed in the early stage of recovery process after melting at low temperatures, where only IR bands resulting from short helices with 12 monomers or less can be seen, which indicates that the presence of crystal residues is not the necessary condition for the polymer memory effect. Avrami analysis further indicated that crystallization mainly took place in melted lamellae. After melting at higher temperatures, melted spherulite cannot recover. Based on above findings, it is proposed that the memory effect can be mainly ascribed to melted lamellae, during which crystalline order is lost but conformational order still exists. These conformational ordered segments formed aggregates, which can play as nucleation precursors at low temperatures.  相似文献   

19.
Small fixed aggregates of a poly(ethylene oxide)-block-polybutadiene diblock copolymer(PEO-b-PB)in THFsolution were obtained by adding a selective solvent for PB blocks,followed by cross-linking the PB shells.Themorphologies of the nanostructured particles with a cross-linked shell were investigated by atomic force microscopy andtransmission electron microscopy.The average behaviors of the PEO crystallization and melting confined within thenanostructured particles were studied by using differential scanning calorimetry experiments.For the deeply cross-linkedsample(SCL-1),the crystallization of the PEO blocks was fully confined.The individual nanoparticles only crystallized atvery low crystallization temperatures(T_cs),wherein the homogenous primary nucleation determined the overallcrystallization rate.For the lightly cross-linked sample(SCL-2),the confinement effect was T_c dependent.At T_c(?)42℃,thecrystallization and melting behaviors of SCL-2 were similar to those of the pure PEO-b-PB diblock copolymer.At T_c>42℃,SCL-2 could form PEO lamellae thicker than those of the pure PEO-b-PB crystallized at the same T_c.  相似文献   

20.
 Ultra high molar mass polyethylene (UITPE) powder as polymerized in a slurry process has been studied, in its nascent state, after recrystallization on rapid cooling from the melt and after hot compression molding to a film, by DSC,effect ofannealing the recrystallized specimen at 120~I30℃, morphology by polarizing optical microscopy and small angle X-ray scattering. Based on the experimental results obtained the macromolecular condensed state of the nascent UHPE powder is a rare case of a multi-chain condensed state of non-interpenetrating chains, involving interlaced extended chain crystalline layers and relaxed parallel chain amorphous layers. On melting, a nematic rubbery state of nanometer size domain resulted. The nematic-isotropic transition temperature was judged from literature data to be at least 220℃, possibly higher than 300℃, the exact temperature is however not sure because of chain degradation at such high temperatures. The recrystallization process from the melt is a crystallization from a nematic rubbery state. The drop of remelting peak temperature by 10 K of the specimen recrystallized from its melt as compared to the nascent state has its origin in the decrease both of the crystalline chain stem length and of the degree of crystallinity. The remelting peak temperature could be returned close to that of the nascent state by annealing at 120~130℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号