首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Anomalous electric birefringence signals of a sonicated and column-fractionated medium-size calf thymus DNA sample (bp  =  570) in Na+ solutions were measured at 7 °C. The reversing-pulse electric birefringence (RPEB) signal pattern was theoretically calculated in the low electric field region for two axially symmetric models coexisting in equilibrium in solution. The RPEB theory is based on the electric dipole moment due to ion-fluctuation along the longitudinal direction and the electric polarizability anisotropy (Δ′), together with various electric and optical parameters assigned to the models. An analytical method was developed for the steady-state birefringence of the two-component system in a wide range of electric fields. The NaDNA samples exhibit complex RPEB patterns mixed with negative- and positive-going profiles. An experimental RPEB signal of NaDNA at an absorbance (A260) of 8 was fitted to theoretical curve at weak electric fields. The anomalous RPEB signal was attributed to the component 2, which shows a dip in the buildup and another in the reverse processes with a positive sign and a larger relaxation time. For the component 1, a normal DNA profile with negative sign is associated with a narrow dip in the reverse and a faster relaxation time in the decay signal. The field-strength dependence of observed steady-state birefringence δ(∞) could be fitted for NaDNA at A260  =  8 by the SUSID orientation function with saturated ionic and electronic moments. An apparent positive maximum and the sign reversal in δ(∞) at weak electric fields is an interplay between the positive component 2 with positive optical factor Δg and negative Δ′ and the negative component 1 with negative Δg and positive Δ′. Possible conformation of two DNA components involved in solution was estimated.  相似文献   

2.
Tensile stress‐relaxation experiments with simultaneous measurements of Young's relaxation modulus, E, and the strain‐optical coefficient, C?, were performed on two amorphous polymers—polystyrene (PS) and polycarbonate (PC)—over a wide range of temperatures and times. Master curves of these material functions were obtained via the time‐temperature superposition principle. The value of C? of PS is positive in the glassy state at low temperature and time; then it relaxes and becomes negative and passes through a minimum in the transition zone from the glassy to rubbery state at an intermediate temperature and time and then monotonically increases with time, approaching zero at a large time. The stress‐optical coefficient of PS is calculated from the value of C?. It is positive at low temperature and time, decreases, passes through zero, becomes negative with increasing temperature and time in the transition zone from the glassy to rubbery state, and finally reaches a constant large negative value in the rubbery state. In contrast, the value of C? of PC is always positive being a constant in the glassy state and continuously relaxes to zero at high temperature and time. The value of Cσ of PC is also positive being a constant in the glassy state and increases to a constant value in the rubbery state. The obtained information on the photoelastic behavior of PS and PC is useful for calculating the residual birefringence and stresses in plastic products. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2252–2262, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号