首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of type I polyketide synthases   总被引:1,自引:0,他引:1  
Covering: up to 2012With the recent structural characterization of each of the component enzymes of type I polyketide synthases, scientists are coming tantalizingly close to elucidating the overall architectures and mechanisms of these enormous molecular factories. This review highlights not only what has been revealed about the structures and activities of each of the domains but also the mysteries that remain to be solved.  相似文献   

2.
Stilbene synthase (STS) and chalcone synthase (CHS) each catalyze the formation of a tetraketide intermediate from a CoA-tethered phenylpropanoid starter and three molecules of malonyl-CoA, but use different cyclization mechanisms to produce distinct chemical scaffolds for a variety of plant natural products. Here we present the first STS crystal structure and identify, by mutagenic conversion of alfalfa CHS into a functional stilbene synthase, the structural basis for the evolution of STS cyclization specificity in type III polyketide synthase (PKS) enzymes. Additional mutagenesis and enzymatic characterization confirms that electronic effects rather than steric factors balance competing cyclization specificities in CHS and STS. Finally, we discuss the problematic in vitro reconstitution of plant stilbenecarboxylate pathways, using insights from existing biomimetic polyketide cyclization studies to generate a novel mechanistic hypothesis to explain stilbenecarboxylate biosynthesis.  相似文献   

3.
Tsai SC 《Chemistry & biology》2004,11(9):1177-1178
In this issue of Chemistry & Biology, a novel Aldol-Switch mechanism is proposed for the biosynthesis of type III polyketides, which include many antioxidants found in colorful fruits. Based on structural and mutagenesis studies, the Aldol-Switch mechanism suggests that electronic effects balance between two competing cyclization specificities in Type III polyketide synthases. A novel hypothesis is also used to explain stilbenecarboxylate biosynthesis.  相似文献   

4.
The catalytic potential of octaketide synthase (OKS), a plant-specific type III polyketide synthase (PKS) from Aloe arborescens, was investigated by phenylacetyl-CoA and benzoyl-CoA as starter substrates. As a result, a novel C16 pentaketide coumarin was produced from phenylacetyl-CoA, whereas benzoyl-CoA was not a good substrate of OKS. Remarkably, a structure-guided OKS N222G mutant dramatically extended the product chain length to yield four novel polyketides including C22 aromatic octaketides from the C6-C2 phenylacetyl starter, as well as a novel C19 heptaketide benzophenone from the C6-C1 benzoyl starter.  相似文献   

5.
Octaketide synthase, a novel plant-specific type III polyketide synthase from Aloe arborescens, efficiently accepted (2RS)-methylmalonyl-CoA as a sole substrate to produce 6-ethyl-4-hydroxy-3,5-dimethyl-2-pyrone. On the other hand, a tetraketide-producing chalcone synthase from Scutellaria baicalensis and a diketide-producing benzalacetone synthase from Rheum palmatum also yielded the unnatural methylated C9 triketide pyrone as a single product by sequential decarboxylative condensations of three molecules of (2RS)-methylmalonyl-CoA.  相似文献   

6.
A novel plant-specific type III polyketide synthase (PKS) that catalyzes formation of a pentaketide chromone, 5,7-dihydroxy-2-methylchromone, from five molecules of malonyl-CoA, was cloned and sequenced from aloe (Aloe arborescens). Site-directed mutagenesis revealed that Met207 (corresponding to Thr197 in CHS) determines the polyketide chain length and the product specificity of the enzyme; remarkably, replacement of a single amino acid residue, Met207, with Gly yielded a mutant enzyme that efficiently produces aromatic octaketides, SEK4 and SEK4b, the products of the minimal PKS for actinorhodin (act from Streptomyces coelicolor), from eight molecules of malonyl-CoA. This provided new insights into the catalytic functions and specificities of the CHS-superfamily type III PKS enzymes.  相似文献   

7.
Abe I  Abe T  Wanibuchi K  Noguchi H 《Organic letters》2006,8(26):6063-6065
[Structure: see text] Benzalacetone synthase from Rheum palmatum efficiently catalyzed condensation of N-methylanthraniloyl-CoA (or anthraniloyl-CoA) with malonyl-CoA (or methylmalonyl-CoA) to produce 4-hydroxy-2(1H)-quinolones, a novel alkaloidal scaffold produced by a type III polyketide synthase (PKS). Manipulation of the functionally divergent type III PKSs by a nonphysiological substrate thus provides an efficient method for production of pharmaceutically important quinolone alkaloids.  相似文献   

8.
Polyketides are a diverse class of medically important natural products whose biosynthesis is catalysed by polyketide synthases (PKSs), in a fashion highly analogous to fatty acid biosynthesis. In modular PKSs, the polyketide chain is assembled by the successive condensation of activated carboxylic acid-derived units, where chain extension occurs with the intermediates remaining covalently bound to the enzyme, with the growing polyketide tethered to an acyl carrier domain (ACP). Carboxylated acyl-CoA precursors serve as activated donors that are selected by the acyltransferase domain (AT) providing extender units that are added to the growing chain by condensation catalysed by the ketosynthase domain (KS). The action of ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) activities can result in unreduced, partially reduced, or fully reduced centres within the polyketide chain depending on which of these enzymes are present and active. The PKS-catalysed assembly process generates stereochemical diversity, because carbon-carbon double bonds may have either cis- or trans- geometry, and because of the chirality of centres bearing hydroxyl groups (where they are retained) and branching methyl groups (the latter arising from use of propionate extender units). This review shall cover the studies that have determined the stereochemistry in many of the reactions involved in polyketide biosynthesis by modular PKSs.  相似文献   

9.
Abe I  Takahashi Y  Noguchi H 《Organic letters》2002,4(21):3623-3626
[reaction: see text] Substrate specificities of plant polyketide synthases (PKSs) were investigated using analogues of malonyl-CoA, the extension unit of the polyketide chain elongation reactions. When incubated with methylmalonyl-CoA and 4-coumaroyl-CoA, plant PKSs (chalcone synthase from Scutellaria baicalensis, stilbene synthase from Arachis hypogaea, and benzalacetone synthase from Rheum palmatum) afforded an unnatural C(6)-C(5) aromatic polyketide, 1-(4-hydroxyphenyl)pent-1-en-3-one, formed by one-step decarboxylative condensation of the two substrates. In contrast, succinyl-CoA was not accepted as a substrate by the enzymes.  相似文献   

10.
Polyketide synthases are intensively studied as metabolite factories generating diverse biologically active natural products. Contrary to their current classification as different "types," there is now a growing body of evidence illustrating that nature realized limitless transitional stages during evolution.  相似文献   

11.
Complex biosynthetic enzymes such as polyketide synthases make mistakes. In this issue of Chemistry & Biology, Jensen et?al. report that a discrete family of acyltransferases is responsible for error correction, hydrolyzing key biosynthetic intermediates from a multi-enzyme complex. This activity might find use in understanding polyketide biosynthesis, particularly in uncultivated organisms and in tailoring the synthesis of small molecules.  相似文献   

12.
BACKGROUND: Polyketide synthases (PKSs) generate molecular diversity by utilizing different starter molecules and by controlling the final length of the polyketide. Although exploitation of this mechanistic variability has produced novel polyketides, the structural foundation of this versatility is unclear. Plant-specific PKSs are essential for the biosynthesis of anti-microbial phytoalexins, anthocyanin floral pigments, and inducers of Rhizobium nodulation genes. 2-Pyrone synthase (2-PS) and chalcone synthase (CHS) are plant-specific PKSs that share 74% amino acid sequence identity. 2-PS forms the triketide methylpyrone from an acetyl-CoA starter molecule and two malonyl-CoAs. CHS uses a p-coumaroyl-CoA starter molecule and three malonyl-CoAs to produce the tetraketide chalcone. Our goal was to elucidate the molecular basis of starter molecule selectivity and control of polyketide length in this class of PKS.Results: The 2.05 A resolution crystal structure of 2-PS complexed with the reaction intermediate acetoacetyl-CoA was determined by molecular replacement. 2-PS and CHS share a common three-dimensional fold, a set of conserved catalytic residues, and similar CoA binding sites. However, the active site cavity of 2-PS is smaller than the cavity in CHS. Of the 28 residues lining the 2-PS initiation/elongation cavity, four positions vary in CHS. Point mutations at three of these positions in CHS (T197L, G256L, and S338I) altered product formation. Combining these mutations in a CHS triple mutant (T197L/G256L/S338I) yielded an enzyme that was functionally identical to 2-PS.Conclusions: Structural and functional characterization of 2-PS together with generation of a CHS mutant with an initiation/elongation cavity analogous to 2-PS demonstrates that cavity volume influences the choice of starter molecule and controls the final length of the polyketide. These results provide a structural basis for control of polyketide length in other PKSs, and suggest strategies for further increasing the scope of polyketide biosynthetic diversity.  相似文献   

13.
Benzoic acid priming of the enterocin and actinorhodin type II polyketide synthase complexes was accomplished in vitro via an unprecedented type II nonribosomal peptide synthetase-like mechanism involving the benzoate:acyl carrier protein (ACP) ligase EncN and the ACP EncC. The transfer of the aryl acid to the ACP is ATP-dependent, yet coenzyme A-independent, as characterized with radiolabeled substrates and protein mass spectrometry. Subsequent transport of the ACP-bound aryl group to the native enterocin and the aberrant actinorhodin ketosynthase chain length factor heterodimers was further demonstrated, thereby demonstrating the potential of this biocatalyst for engineering diverse aryl-primed aromatic polyketide agents.  相似文献   

14.
The type I fatty acid and polyketide synthases: a tale of two megasynthases   总被引:1,自引:0,他引:1  
This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity.  相似文献   

15.
A synthetic metabolic pathway has been constructed in vitro consisting of the type III polyketide synthase from Streptomyces coelicolor and peroxidases from soybean and Caldariomyces fumago (chloroperoxidase). This has resulted in the synthesis of the pentaketide flaviolin and its dimeric derivative, and a wide range of pyrones and their coupled derivatives with flaviolin, as well as their halogenated derivatives. The addition of acyl-CoA oxidase to the pathway prior to the polyketide synthase resulted in unsaturated pyrone side chains, further broadening the product spectrum that can be achieved. The approach developed in this work, therefore, provides a new model to exploit biocatalysis in the synthesis of complex natural product derivatives.  相似文献   

16.
Pentaketide chromone synthase (PCS) from Aloe arborescens is a novel plant-specific type III polyketide synthase (PKS) that produces 5,7-dihydroxy-2-methylchromone from five molecules of malonyl-CoA. On the basis of the crystal structures of wild-type and M207G mutant PCS, the F80A/Y82A/M207G triple mutant was constructed and shown to produce an unnatural novel nonaketide naphthopyrone by sequential condensations of nine molecules of malonyl-CoA. This is the first demonstration of the formation of a nonaketide by the structurally simple type III PKS. A homology model predicted that the active-site cavity volume of the triple mutant is increased to 4 times that of the wild-type PCS.  相似文献   

17.
Polyketides from actinomycete bacteria provide the basis for many valuable medicines, so engineering genes for their biosynthesis to produce variant molecules holds promise for drug discovery. The modular polyketide synthases are particularly amenable to this approach, because each cycle of chain extension is catalyzed by a different module of enzymes, and the modules are arranged within giant multienzyme subunits in the order in which they act. Protein-protein interactions between terminal docking domains of successive multienzymes promote their correct positioning within the assembly line, but because the overall complex is not stable in vitro, the key interactions have not been identified. We present here the NMR solution structure of a 120 residue polypeptide representing a typical pair of such domains, fused at their respective C and N termini: it adopts a stable dimeric structure which reveals the detailed role of these (predominantly helical) domains in docking and dimerization by modular polyketide synthases.  相似文献   

18.
Individual modules of modular polyketide synthases (PKSs) such as 6-deoxyerythronolide B synthase (DEBS) consist of conserved, covalently linked domains separated by unconserved intervening linker sequences. To better understand the protein-protein and enzyme-substrate interactions in modular catalysis, we have exploited recent structural insights to prepare stand-alone domains of selected DEBS modules. When combined in vitro, ketosynthase (KS), acyl transferase (AT), and acyl carrier protein (ACP) domains of DEBS module 3 catalyzed methylmalonyl transfer and diketide substrate elongation. When added to a minimal PKS, ketoreductase domains from DEBS modules 1, 2, and 6 showed specificity for the beta-ketoacylthioester substrate, but not for either the ACP domain carrying the polyketide substrate or the KS domain that synthesized the substrate. With insights into catalytic efficiency and specificity of PKS modules, our results provide guidelines for constructing optimal hybrid PKS systems.  相似文献   

19.
Acyl carrier proteins (ACPs) play a fundamental role in directing intermediates among the enzyme active sites of fatty acid and polyketide synthases (PKSs). In this paper, we demonstrate that the Streptomyces coelicolor (S. coelicolor) actinorhodin (act) PKS ACP can catalyze transfer of malonate to type II S. coelicolor fatty acid synthase (FAS) and other PKS ACPs in vitro. The reciprocal transfer from S. coelicolor FAS ACP to a PKS ACP was not observed. Several mutations in both act ACP and S. coelicolor FAS ACP could be classified by their participation in either donation or acceptance of this malonyl group. These mutations indicated that self-malonylation and malonyl transfer could be completely decoupled, implying that they were separate processes and that a FAS ACP could be converted from a non-malonyl-transferring protein to one with malonyl transferase activity.  相似文献   

20.
The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) produces a variety of plant secondary metabolites with remarkable structural diversity and biological activities (e.g., chalcones, stilbenes, benzophenones, acrydones, phloroglucinols, resorcinols, pyrones, and chromones). Here we describe an octaketide-producing novel plant-specific type III PKS from aloe (Aloe arborescens) sharing 50-60% amino acid sequence identity with other plant CHS-superfamily enzymes. A recombinant enzyme expressed in Escherichia coli catalyzed seven successive decarboxylative condensations of malonyl-CoA to yield aromatic octaketides SEK4 and SEK4b, the longest polyketides known to be synthesized by the structurally simple type III PKS. Surprisingly, site-directed mutagenesis revealed that a single residue Gly207 (corresponding to the CHS's active site Thr197) determines the polyketide chain length and product specificity. Small-to-large substitutions (G207A, G207T, G207M, G207L, G207F, and G207W) resulted in loss of the octaketide-forming activity and concomitant formation of shorter chain length polyketides (from triketide to heptaketide) including a pentaketide chromone, 2,7-dihydroxy-5-methylchromone, and a hexaketide pyrone, 6-(2,4-dihydroxy-6-methylphenyl)-4-hydroxy-2-pyrone, depending on the size of the side chain. Notably, the functional diversity of the type III PKS was shown to evolve from simple steric modulation of the chemically inert single residue lining the active-site cavity accompanied by conservation of the Cys-His-Asn catalytic triad. This provided novel strategies for the engineered biosynthesis of pharmaceutically important plant polyketides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号