首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The overloaded band profiles of the protonated species of propranolol and amitriptyline were recorded under acidic conditions on four classes of stationary phases including a conventional silica/organic hybrid material in reversed‐phase liquid chromatography mode (BEH‐C18), an electrostatic repulsion reversed‐phase liquid chromatography C18 column (BEH‐C18+), a poly(styrene‐divinylbenzene) monolithic column, and a hydrophilic interaction chromatography stationary phase (underivatized BEH). The same amounts of protonated bases per unit volume of stationary phase were injected in each column (16, 47, and 141 μg/cm3). The performance of the propranolol/amitriptyline purification was assessed on the basis of the asymmetry of the recorded band profiles and on the selectivity factor achieved. The results show that the separation performed under reversed‐phase liquid chromatography like conditions (with BEH‐C18, BEH‐C18+, and polymer monolith materials) provide the largest selectivity factors due to the difference in the hydrophobic character of the two compounds. However, they also provide the most distorted overloaded band profiles due to a too small loading capacity. Remarkably, symmetric band profiles were observed with the hydrophilic interaction chromatography column. The larger loading capacity of the hydrophilic interaction chromatography column is due to the accumulation of the protonated bases into the diffuse water layer formed at the surface of the polar adsorbent. This work encourages purifying ionizable compounds on hydrophilic interaction chromatography columns rather than on reversed‐phase liquid chromatography columns.  相似文献   

2.
We have developed a new hydrolytically stable amide-embedded stationary phase via a simple and effective synthetic method. The preparation of the new phase involves the synthesis of multifunctional silane ligands and the surface modification of porous silica particles via multiple attachments of these ligands to the silica surface. A hydrolytically stable coating was produced as a result of multiple covalent linkages formed between silane ligands and the silica surface, and cross-linking between adjacent ligands. The resulting amide-embedded stationary phase showed excellent hydrolytic stability over a wide pH range. Like other existing amide-embedded columns, this new stationary phase exhibits higher retention for polar compounds and different selectivity as compared to conventional C18 columns. The new phase is compatible with 100% aqueous mobile phases, and also provides high column efficiency and good peak shapes for both acidic and basic compounds.  相似文献   

3.
Monolithic silica capillary columns with i.d. 100 μm and monolithic silica rods were prepared with tetramethoxysilane (TMOS) or a mixture of TMOS and metyltrimethoxysilane (MTMS) using different hydrothermal treatments at T=80 °C or 120 °C. Nitrogen physisorption was applied for the pore characterization of the rods and inverse size exclusion chromatography (ISEC) for that of the capillary columns. Using nitrogen physisorption, it was shown change of pore size and surface area corresponds to that of hydrothermal treatment and silica precursor. The results from ISEC agreed well with those from nitrogen physisorption regarding the pore size distribution (PSD). In addition, the retention factors for hexylbenzene with the ODS-modified capillary columns in methanol/water=80/20 at T=30 °C could also support the results from nitrogen physisorption. Furthermore, column efficiency for the columns was evaluated with alkylbenzenes and three kinds of peptides, leucine-enkephalin, angiotensin II, and insulin. Column efficiency for alkylbenzenes was similar independently of the hydrothermal treatment at T=120 °C. Even for TMOS columns, there was no significant difference in column efficiency for the peptides despite the difference in hydrothermal treatment. In contrast, for hybrid columns, it was possible to confirm the effect on hydrothermal treatment at T=120 °C resulting in a different column efficiency, especially for insulin. This difference supports the results from both nitrogen physisorption and ISEC, showing the presence of more small pores of ca. 3-6 nm for a hybrid silica without hydrothermal treatment at T=120 °C. Consequently, the results suggest that hydrothermal treatment for a hybrid column with higher temperature or longer time is necessary, compared to that for a TMOS column, to provide higher column efficiency with increase in molecular size of solute.  相似文献   

4.
The reproducibility of the retention data and the band profiles was investigated with Kromasil C18 columns (silica-based monomeric type reversed-phase packing material). High precision data were obtained and statistically compared among five columns from the same batch (column-to-column reproducibility) and six columns, one from each of six different batches (batch-to-batch reproducibility). These data were acquired under five different sets of chromatographic conditions, for a group of 30 neutral, acidic and basic compounds selected as probes following an experimental protocol previously described. Data characterizing the retention time, the retention factor, the separation factor, the column efficiency and the peak asymmetry for the different probe compounds are reported. Factors describing the silica surface interaction with the selected probe compounds, such as the hydrophobic interaction selectivity, the steric selectivity, and the separation factors of basic compounds at different pH values were also determined. The influence of the underlying silica on these data and correlations between the chromatographic and physico-chemical properties of the different batches are discussed.  相似文献   

5.
《Analytical letters》2012,45(8):1483-1502
Abstract

It is demonstrated that silica gel columns will quantitatively adsorb free Cu2+ and Pb2+ ions at pH > 8. These are eluted with 0.1 M HNO3 but not with methanol. Negatively charged EDTA chelates are not adsorbed. Neutral APDC chelates are partially adsorbed on silica columns, but are quantitatively adsorbed on C18-bonded columns, and are eluted with methanol. The metal ions are partially adsorbed on C18-bonded columns, due to residual silanol groups. A microcolumn (1 mm i.d., 5 cm length) manifold system is described for automatic delivery of eluant (0.12 ml) to a heated atomic absorption graphite atomizer, using either methanol or 0.1 M HNO3 in methanol eluant, allowing speciation and measurement of parts per billion of metals. These studies demonstrate that by using a mixed column or sequential columns of silica gel and C18-bonded silica, cationic and neutral metal species could be adsorbed, followed by sequential elution and measurement using methanol and then 0.1 M HNO. Negatively charged species could be measured directly in the sample eluant or obtained by difference from a total metal measurement.  相似文献   

6.
Different RP-HPLC columns (phenyl, conventional ODS, cross-linked C(18) and special end-capped C(8) and C(18) phases) were used to investigate the separation of four basic ionizable isomers. Using ACN/20mM NH(4)OAc aq., a separation was observed exclusively on RP columns with higher silanol activity at unusual high ACN concentration, indicating cation-exchange as main retention mechanism. Using MeOH/20mM NH(4)OAc aq., another separation at low MeOH concentrations was observed on both, RP columns with higher as well as RP columns with lower silanol activity, which is mainly based on hydrophobic interactions. The isomers were also separated on a bare silica column at higher MeOH content using NH(4)OAc. Since cation-exchange governs this retention, the elution order was different compared to the RP phases. A strong retention on the silica column was observed in ACN, which could be attributed to partition processes as additional retention mechanism.  相似文献   

7.
We have characterized a sulfobetaine stationary phase based on 1.7 μm ethylene-bridged hybrid organic–inorganic particles, which is intended for use in hydrophilic interaction chromatography. The efficiency of a column packed with this material was determined as a function of flow rate, demonstrating a minimum reduced plate height of 2.4. The batch-to-batch reproducibility was assessed using the separation of a mixture of acids, bases, and neutrals. We compared the retention and selectivity of the hybrid sulfobetaine stationary phase to that of several benchmark materials. The hybrid sulfobetaine material gave strong retention for polar neutrals and high selectivity for methyl groups, hydroxy groups, and configurational isomers. Large differences in cation and anion retention were observed among the columns. We characterized the acid and base stability of the hybrid sulfobetaine stationary phase, using accelerated tests at pH 1.3 and 11.0, both at 70°C. The results support a recommended pH range of 2–10. We also investigated the performance of columns packed with this material for metal-sensitive analytes, comparing conventional stainless steel column hardware to hardware that incorporates hybrid surface technology to mitigate interactions with metal surfaces. Compared to the conventional columns, the hybrid surface technology columns showed a greatly improved peak shape.  相似文献   

8.
In this work, a C(18) reversed-phase column with nonporous polymeric 2.5- micro m particles is utilized to initially test the analysis of oxidized and deamidated human growth hormone (hGH). Phosphate buffer (pH 7.5) with 24% 1-propanol was used for elution. This quick method (analysis time is 20 min) gave a selectivity, as judged by the number of detected peaks, and resolution of hGH variants that is better than many methods in which porous silica particle columns are used. Only mixtures of oxidized and deamidated hGH are analyzed, and no characterization of the peaks is performed. The results indicate that C(18) nonporous polymeric column material is a promising alternative for the chromatographic separation of several hGH variants.  相似文献   

9.
The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 microL samples of a 50 mM probe solution were injected into C(18)-bonded columns using a series of five buffered mobile phases at (SW)pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account the simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C(18)-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C(18)-bonded layer and the bulk phase.  相似文献   

10.
A systematic investigation was undertaken into the relative separation performance of five reversed-phase chromatography columns including some commercially new hybrid packed columns for a series of polycarboxylic acids and polyphenol compounds. Information theory (IT) and factor analysis (FA), together with a basic evaluation of retention information (band shape, retention factor and elution order) were used to compare four columns to a conventional C18 column. The results revealed very little difference in retention behaviour between the Phenomenex Aqua C18 column, the Waters XTerra RP C18 column, and the conventional Phenomenex Luna C18 column. However, there were notable differences in the retention processes between the Phenomenex Synergi polar-RP column, which is an ether-linked phenyl base with polar endcapping, and the Luna C18 column. The most significant differences were observed between the Luna C18 column and a Phenomenex Luna Cyano column. However, the limited degree of retention of the polycarboxylic acids and polyphenol compounds on the Luna Cyano column permits only limited use for the separation of these types of compounds. Overall, the Phenomenex Synergi polar-RP column exhibited the best performance for the separation of the test solutes compared to that of the conventional C18 column, with IT yielding an Informational Similarity of 0.99 and FA a moderate correlation coefficient of 0.70. The Phenomenex Synergi polar-RP column gave the best peak shape and offered substantial selectivity differences thereby providing a good alternative over the conventional C18 column for separating polycarboxylic acids and polyphenols.  相似文献   

11.
Single-component adsorption-isotherm data were acquired by frontal analysis (FA) for six low-molecular-mass compounds (phenol, aniline, caffeine, theophylline, ethylbenzene and propranolol) on one Kromasil-C18 column, using water-methanol solutions (between 70:30 and 20:80, v/v) as the mobile phase. Propranolol data were also acquired using an acetate buffer (0.2 M) instead of water. The data were modeled for best agreement between calculated and experimental overloaded band profiles. The adsorption energy distribution was also derived and used for the selection of the best isotherm model. Widely different isotherm models were found to model best the data obtained for these compounds, convex upward (i.e. Langmuirian), convex downward (i.e. anti-Langmuirian), and S-shaped isotherms. Using the same sample size for all columns (loading factor, Lf approximately 10%), overloaded band profiles were recorded on four different columns packed with the same batch of Kromasil-C18 and five other columns packed with different batches of Kromasil-C18. These experimental band profiles were compared to the profile calculated from the isotherm measured by FA on the first column. The repeatability as well as the column-to-column and the batch-to-batch reproducibilities of the band profiles are better than 4%.  相似文献   

12.
A novel polydentate C18 silica column was evaluated at an elevated temperature under acidic, basic, and neutral mobile phase conditions using ACN and methanol as the mobile phase organic modifier. The temperature range was 40-200 degrees C. The mobile phase compositions were from 0 to 80% organic-aqueous v/v and the mobile phase pH levels were between 2 and 12. The maximum operating temperature of the column was affected by the amount and type of organic modifier used in the mobile phase. Under neutral conditions, the column showed good column thermal stability at temperatures ranging between 120 and 200 degrees C in methanol-water and ACN-water solvent systems. At pH 2 and 3, the column performed well up to about 160 degrees C at two fixed ACN-buffer compositions. Under basic conditions at elevated temperatures, the column material deteriorated more quickly, but still remained stable up to 100 degrees C at pH 9 and 60 degrees C at pH 10. The results of this study indicate that this novel C18 silica-based column represents a significant advancement in RPLC column technology with enhanced thermal and pH stability when compared to traditional bonded phase silica columns.  相似文献   

13.
采用溶胶-凝胶技术制备了丁基胺丙基硅胶毛细管整体柱,此整体固定相表面同时含有能产生阳极的电渗流的仲胺官能团和产生疏水作用的正丁基和丙基官能团。对所制备的整体柱电色谱性能进行了详细的表征和分析。考察了流动相pH值对电渗流的影响;对烷基苯同系物、有机酸酸性化合物和苯胺类碱性化合物保留行为进行了研究,并对其可能的保留机理进行了探讨。实验结果表明,对于中性化合物的保留机理主要基于反相作用;而对于酸性化合物的保留行为则是基于混合模式作用机理,即除了电泳作用外,还包括阴离子交换和疏水作用。碱性化合物在丁基胺丙基硅胶毛细管整体柱上的峰形较好,没有明显的峰拖尾现象。  相似文献   

14.
Four fully porous C18 columns (Hypersil Gold, ACE3, Xbridge and Gemini NX), widely employed in the pharmaceutical industry, were compared in terms of efficiency and analysis speed with the Kinetic Plot Method. Weakly basic, medium-sized, N-containing pharmaceutical compounds from GlaxoSmithKline Research and Development were used as test molecules. Isocratic elution was carried out at pH 4.5 and pH 8.0 with acetonitrile as organic modifier. The columns under evaluation included highly pure silica supports (Hypersil Gold, ACE3) and hybrid polymer-silica supports (XBridge, Gemini NX). Both types of columns claim for nearly absent secondary interactions with ionized silanol groups and are therefore applicable in a wide pH range. This is an important feature for method development purposes in pharmaceutical industries. The Kinetic Plot Method was used to compare the support characteristics and assess the kinetic performance of the columns in different experimental conditions. Although the evaluated columns have roughly identical particle diameters (from 3.0 to 3.5 μm) according to their manufacturers, large differences in kinetic performance were observed at pH 4.5 that can be accounted for by different flow resistances, porosities and average particle diameters, experimentally determined from scanning electron microscopy and laser light scattering experiments on loose stationary phase material. The ACE3 column was the best performing support among the evaluated columns, due to its excellent efficiency and average flow resistance. The better performance of the ACE3 column was due to its better packing quality, as could be derived from its impedance plot. Kinetic plots of resolution of a critical pair versus analysis time and column length were established at pH 8.0. These plots can be used as a method development tool to tailor the separation conditions to the required resolution of a given critical pair, combining efficiency and selectivity features of the column.  相似文献   

15.
A new method of HPLC column retentivity testing utilizes polymeric probes instead of conventional sets of low molar mass substances. The procedure allows at least semiquantitative, separate and independent evaluation of adsorption and partition properties of column packings. In this present work, the method is applied for comparison of the polar interactivities of selected silica gel C18 HPLC columns. It is shown that free silanols which remained on the surface of the end-capped silica C18 column packings are accessible for interaction with highly polar macromolecules. High molar mass polymeric test probes are adsorbed on the surface silanols and their retention volumes increase. As result, deviations from regular size-exclusion chromatographic (SEC) behavior are observed. The extent of retention volume changes depends on both the nature of polymer probes and on column packing type. Adsorption of macromolecules can be suppressed by addition of a highly polar substance to the mobile phase. The amount of polar additive which is needed to attain regular SEC elution of the polymer probe depends on the column packing type and can be used as a characteristic of silanophilic column interactivity. Courses of dependences of retention volumes on sizes of macromolecules indicate the presence of "U-turn" adsorption which allows two and more silanols situated among C18 groups to be occupied simultaneously with the same macromolecule.  相似文献   

16.
In this study, the analysis of a peptide set, chosen for their differences in hydrophilicity, and the tryptic digests of bovine cytochrome c and β-lactoglobulin by hydrophilic interaction chromatography–electrospray ionisation mass spectrometry (HILIC–ESI-MS) is demonstrated. Two different types of HILIC phases, i.e., an amide- and an amino-modified silica-based phase, packed into narrow bore or capillary columns, were investigated with separations conducted under either low pH or neutral pH conditions. The separation performance of the two HILIC columns with respect to peak efficiency and selectivity have been documented under these different mobile phase conditions, and the results compared with the performance of a conventional capillary reversed-phase C18 column of similar dimensions. It was found that very good separation of the peptide set could be achieved by using the amide-modified silica column over a broad pH range. Moreover, with the protein digest samples, excellent separation of the tryptic digests was obtained with the amide-modified HILIC column under neutral pH conditions. Compared to the conventional reversed-phase C18 separations, the use of these HILIC columns not only provided complementary separation selectivity, but also offered the capability to identify unique peptides using tandem HILIC–mass spectrometric techniques. These studies therefore highlight the potential of HILIC procedures for future proteomic applications.  相似文献   

17.
Yan L  Zhang Q  Zhang W  Feng Y  Zhang L  Li T  Zhang Y 《Electrophoresis》2005,26(15):2935-2941
A novel hybrid organic-inorganic silica-based monolithic column possessing phenyl ligands for reversed-phase (RP) capillary electrochromatography (CEC) is described. The monolithic stationary phase was prepared by in situ co-condensation of tetraethoxysilane (TEOS) with phenyltriethoxysilane (PTES) via a two-step catalytic sol-gel procedure to introduce phenyl groups distributed throughout the silica matrix for chromatographic interaction. The hydrolysis and condensation reactions of precursors were chemically controlled through pH variation by adding hydrochloric acid and dodecylamine, respectively. The structural property of the monolithic column can be easily tailored through adjusting the composition of starting sol solution. The effect of PTES/TEOS ratios on the morphology of the created stationary phases was investigated. A variety of neutral and basic analytes were used to evaluate the column performance. The CEC columns exhibited typical RP chromatographic retention mechanism for neutral compounds and had improved peak shape for basic solutes.  相似文献   

18.
The mesopores of a monolithic silica column are very important and useful for chromatographic separation since they can offer sufficiently large surface area. In this paper, a novel method with the assistance of an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate ([bmin]BF4)) was developed for the preparation of a C18-modified monolithic silica column for the first time, in which, the through pores and mesopores were formed simultaneously during the sol-gel reaction. The method is effective to simplify the preparation process of the silica-based monolithic columns. The factors influencing the sol-gel process, including the content of methanol and pH, were studied. The chromatographic performance of the prepared monolithic column was evaluated by the separation of alkylbenzenes.  相似文献   

19.
20.
In this paper, a poly(styrene-octadecene-divinylbenzene) (PS-OD-DVB) monolithic column was prepared in one step by introducing a C18 carbon chain as monomer. N,N-Dimethylformamide and decanol served as porogens to make a homogeneous polymerization mixture in a fused silica capillary (320 microm inner diameter). Its physical and chromatographic properties were compared with those of poly(styrene-divinylbenzene) (PS-DVB) monolithic column, which was also fabricated by in-situ polymerization in a fused silica capillary with the same inner diameter. Six standard proteins were used to evaluate the columns and their potential application for the separation of human hemoglobin was also discussed. It was shown that the PS-OD-DVB and PS-DVB monoliths appeared to have similar efficiency for rapid separation of six proteins within 3.5 min. The PS-OD-DVB monolith was found to have higher loading capacity and higher resolution for the separation of alpha and beta chains of hemoglobin because of the introduction of C18 carbon chains, and shows great potential for the separation of bio-macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号