首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We consider the Cauchy problem for an abstract quasilinear hyperbolic equation with variable operator coefficients and a nonsmooth but Bochner integrable free term in a Hilbert space. Under study is the scheme for approximate solution of this problem which is a combination of the Galerkin scheme in space variables and the three-layer difference scheme with time weights. We establish an a priori energy error estimate without any special conditions on the projection subspaces. We give a concrete form of this estimate in the case when discretization in the space variables is carried out by the finite element method (for a partial differential equation) and by the Galerkin method in Mikhlin form.  相似文献   

2.
We propose and analyze the finite volume method for solving the variational inequalities of first and second kinds. The stability and convergence analysis are given for this method. For the elliptic obstacle problem, we derive the optimal error estimate in the H1‐norm. For the simplified friction problem, we establish an abstract H1‐error estimate, which implies the convergence if the exact solution uH1(Ω) and the optimal error estimate if uH1 + α(Ω),0 < α≤2. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
We study a nonlocal mixed problem for a nonlinear pseudoparabolic equation, which can, for example, model the heat conduction involving a certain thermodynamic temperature and a conductive temperature. We prove the existence, uniqueness and continuous dependence of a strong solution of the posed problem. We first establish for the associated linear problem a priori estimate and prove that the range of the operator generated by the considered problem is dense. The technique of deriving the a priori estimate is based on constructing a suitable multiplicator. From the resulted energy estimate, it is possible to establish the solvability of the linear problem. Then, by applying an iterative process based on the obtained results for the linear problem, we establish the existence, uniqueness and continuous dependence of the weak solution of the nonlinear problem.  相似文献   

4.
This work deals with an approximation method for multivariate functions from data constituted by a given data point set and a partial differential equation (PDE). The solution of our problem is called a PDE spline. We establish a variational characterization of the PDE spline and a convergence result of it to the function which the data are obtained. We estimate the order of the approximation error and finally, we present an example to illustrate the fitting method.  相似文献   

5.
By employing the monotone iterative technique, we not only establish the existence of the unique solution for a fractional integral boundary value problem on semi-infinite intervals, but also develop an explicit iterative sequence for approximating the solution and give an error estimate for the approximation, which is an important improvement of existing results.  相似文献   

6.
张德悦  马富明 《东北数学》2004,20(2):236-252
In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium are governed by the Maxwell equations together with the Drude-Born-Fedorov equations. We simplify the problem to a two-dimensional scattering problem and we show that for all but possibly a discrete set of wave numbers, there is a unique quasi-periodic weak solution to the diffraction problem. The diffraction problem can be solved by finite element method. We also establish uniform error estimates for the finite element method and the error estimates when the truncation of the nonlocal transparent boundary operators takes place.  相似文献   

7.
We study the Poisson problem with zero boundary datum in a (finite) polyhedral cylinder with a non-convex edge. Applying the Fourier sine series to the equation along the edge and by a corner singularity expansion for the Poisson problem with parameter, we define the edge flux coefficient and the regular part of the solution on the polyhedral cylinder. We present a numerical method for approximating the edge flux coefficient and the regular part and show the stability. We derive an error estimate and give some numerical experiments.  相似文献   

8.
We consider a concept of linear a priori estimate of the accuracy for approximate solutions to inverse problems with perturbed data. We establish that if the linear estimate is valid for a method of solving the inverse problem, then the inverse problem is well-posed according to Tikhonov. We also find conditions, which ensure the converse for the method of solving the inverse problem independent on the error levels of data. This method is well-known method of quasi-solutions by V. K. Ivanov. It provides for well-posed (according to Tikhonov) inverse problems the existence of linear estimates. If the error levels of data are known, a method of solving well-posed according to Tikhonov inverse problems is proposed. This method called the residual method on the correctness set (RMCS) ensures linear estimates for approximate solutions. We give an algorithm for finding linear estimates in the RMCS.  相似文献   

9.
In this paper, we consider the reconstruction of the wave field in a bounded domain. By choosing a special family of functions, the Cauchy problem can be transformed into a Fourier moment problem. This problem is ill-posed. We propose a regularization method for obtaining an approximate solution to the wave field on the unspecified boundary. We also give the convergence analysis and error estimate of the numerical algorithm. Finally, we present some numerical examples to show the effectiveness of this method.  相似文献   

10.
A coupling of FEM-BEM for a kind of Signorini contact problem   总被引:1,自引:0,他引:1  
In this paper, we consider a kind of coupled nonlinear problem with Signorini contact conditions. To solve this problem, we discuss a new coupling of finite element and boundary element by adding an auxiliary circle. We first derive an asymptotic error estimate of the approximation to the coupled FEM-BEM variational inequality. Then we design an iterative method for solving the coupled system, in which only three standard subproblems without involving any boundary integral equation are solved. It will be shown that the convergence speed of this iteration method is independent of the mesh size.  相似文献   

11.
By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally, numerical experiments are reported. The first author was supported by China Postdoctoral Sciences Foundation.  相似文献   

12.
We develop the error analysis for the h‐version of the discontinuous Galerkin finite element discretization for variational inequalities of first and second kinds. We establish an a priori error estimate for the method which is of optimal order in a mesh dependant as well as L2‐norm.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

13.
We study a defect correction method for the approximation of viscoelastic fluid flow. In the defect step, the constitutive equation is computed with an artificially reduced Weissenberg parameter for stability, and the resulting residual is corrected in the correction step. We prove the convergence of the defect correction method and derive an error estimate for the Oseen‐viscoelastic model problem. The derived theoretical results are supported by numerical tests for both the Oseen‐viscoelastic problem and the Johnson‐Segalman model problem. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

14.
We discuss an error estimation procedure for the global error of collocation schemes applied to solve singular boundary value problems with a singularity of the first kind. This a posteriori estimate of the global error was proposed by Stetter in 1978 and is based on the idea of Defect Correction, originally due to Zadunaisky. Here, we present a new, carefully designed modification of this error estimate which not only results in less computational work but also appears to perform satisfactorily for singular problems. We give a full analytical justification for the asymptotical correctness of the error estimate when it is applied to a general nonlinear regular problem. For the singular case, we are presently only able to provide computational evidence for the full convergence order, the related analysis is still work in progress. This global estimate is the basis for a grid selection routine in which the grid is modified with the aim to equidistribute the global error. This procedure yields meshes suitable for an efficient numerical solution. Most importantly, we observe that the grid is refined in a way reflecting only the behavior of the solution and remains unaffected by the unsmooth direction field close to the singular point.  相似文献   

15.
We propose and examine the primal and dual finite element method for solving an axially symmetric elliptic problem with mixed boundary conditions. We derive an a posteriori error estimate and generalize the method used for a nonlinear elliptic problem. Finally, an a posteriori error estimate for a nonlinear parabolic problem based on the concept of hierarchical finite element basis functions is introduced.  相似文献   

16.
Summary.   In this paper we establish a error estimation on the boundary for the solution of an exterior Neumann problem in . To solve this problem we consider an integral representation which depends from the solution of a boundary integral equation. We use a full piecewise linear discretisation which on one hand leads to a simple numerical algorithm but on the other hand the error analysis becomes more difficult due to the singularity of the integral kernel. We construct a particular approximation for the solution of the boundary integral equation, for the solution of the Neumann problem and its gradient on the boundary and estimate their error. Received May 11, 1998 / Revised version received July 7, 1999 / Published online August 24, 2000  相似文献   

17.
An outstanding problem when computing a function of a matrix, f(A), by using a Krylov method is to accurately estimate errors when convergence is slow. Apart from the case of the exponential function that has been extensively studied in the past, there are no well‐established solutions to the problem. Often, the quantity of interest in applications is not the matrix f(A) itself but rather the matrix–vector products or bilinear forms. When the computation related to f(A) is a building block of a larger problem (e.g., approximately computing its trace), a consequence of the lack of reliable error estimates is that the accuracy of the computed result is unknown. In this paper, we consider the problem of computing tr(f(A)) for a symmetric positive‐definite matrix A by using the Lanczos method and make two contributions: (a) an error estimate for the bilinear form associated with f(A) and (b) an error estimate for the trace of f(A). We demonstrate the practical usefulness of these estimates for large matrices and, in particular, show that the trace error estimate is indicative of the number of accurate digits. As an application, we compute the log determinant of a covariance matrix in Gaussian process analysis and underline the importance of error tolerance as a stopping criterion as a means of bounding the number of Lanczos steps to achieve a desired accuracy.  相似文献   

18.
This work concerns with the discontinuous Galerkin (DG) method for the time‐dependent linear elasticity problem. We derive the a posteriori error bounds for semidiscrete and fully discrete problems, by making use of the stationary elasticity reconstruction technique which allows to estimate the error for time‐dependent problem through the error estimation of the associated stationary elasticity problem. For fully discrete scheme, we make use of the backward‐Euler scheme and an appropriate space‐time reconstruction. The technique here can be applicable for a variety of DG methods as well.  相似文献   

19.
In the present paper, we study the initial inverse problem (backward problem) for a two-dimensional fractional differential equation with Riemann-Liouville derivative. Our model is considered in the random noise of the given data. We show that our problem is not well-posed in the sense of Hadamard. A truncated method is used to construct an approximate function for the solution (called the regularized solution). Furthermore, the error estimate of the regularized solution in L2 and Hτ norms is considered and illustrated by numerical example.  相似文献   

20.
Our fundamental solution method gives an analytic representation of the approximate solution for the reduced wave problem in the exterior region of a disc. The asymptotic behavior of this representation yields an approximate formula for the scattering amplitude. An error estimate for this formula is given. We add two numerical tests: the numerical estimate of errors; and profiles of scattering cross sections and the far-field coefficient. Both tests include cases of high wave numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号