首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-assembly of racemic and enantiopure binaphthyl-bis(amidopyridyl) ligands 1,1'-C(20)H(12){NHC(=O)-4-C(5)H(4)N}(2), 1, and 1,1'-C(20)H(12){NHC(=O)-3-C(5)H(4)N}(2), 2, with mercury(II) halides (HgX(2); X = Cl, Br, I) to form extended metal-containing arrays is described. It is shown that the self-assembly can lead to homochiral or heterochiral polymers or macrocycles, through self-recognition or self-discrimination of the ligand units, and the primary materials can further self-assemble through hydrogen bonding between amide substituents. In addition, the formation of macrocycles or polymers can be influenced by the presence or absence of excess mercury(II) halide, through a template effect, and mercury(II) halide inclusion complexes may be formed. In one case, an unusual polymeric compound was obtained, with 1 guest HgX(2) molecule for every 12 mercury halide units in the polymer.  相似文献   

2.
The thiophene-based bis(N-methylamido-pyridine) ligand SC4H2-2,5-{C(=O)N(Me)-4-C5H4N}2 reacts with silver(I) salts AgX to give 1 : 1 complexes, which are characterized in the solid state as the macrocyclic complexes [Ag(2){SC4H2-2,5-(CONMe-4-C5H4N)2}2][X]2, which have the cis conformation of the C(=O)N(Me) group, when X = CF3CO2, NO3, or CF3SO3 but as the polymeric complex [Ag(n){SC4H2-2,5-(CONMe-4-C5H4N)2}n][X]n, with the unusual trans conformation of the C(=O)N(Me) group, when X = PF6. The bis(amido-pyridine) ligand SC4H2-2,5-{C(=O)NHCH2-3-C5H4N}2 reacts with silver(I) trifluoroacetate to give the polymeric complex [Ag(n){SC4H2-2,5-(CONHCH2-3-C5H4N)2}n][X]n, X = CF3CO2. The macrocyclic complexes contain transannular argentophilic secondary bonds. The polymers self assemble into sheet structures through interchain C=O...Ag and S...Ag bonds in [Ag(n){SC4H2-2,5-(CONMe-4-C5H4N)2}n][PF6]n and through Ag...Ag, C=O...Ag and Ag...O(trifluoroacetate)...HN secondary bonds in [Ag(n){SC4H2-2,5-(CONHCH2-3-C5H4N)2}n][CF3CO2]n.  相似文献   

3.
Reaction of trans-[PdX2(SMe2)2](X = Cl or Br) with the chiral ligand LL = 1,1'-binaphthyl-2,2'-(NHC(= O)-3-C5H4N)2 gave the [2]catenane complexes trans-[{(PdX2)2(micro-LL)2}2], which are formed by self-assembly from 4 units each of trans-PdX2 and LL. The catenation is favored by the formation of multiple hydrogen bonds between the constituent macrocycles (4 x NHClPd, 2 x NHO double bond C). If the ligand LL is racemic, each macrocycle trans-[(PdX2)2(micro-LL)2] is formed in the meso form trans-[(PdX2)2(micro-R-LL)(micro-S-LL)] but the resulting [2]catenane is chiral as a direct result of the catenation step. This is the first time that this form of chiral [2]catenane has been observed. The enantiomers of the [2]catenane further self-assemble in the crystalline form, through secondary intermolecular PdX bonding, to form a racemic infinite supramolecular polymer of [2]catenanes.  相似文献   

4.
Attempts at synthesizing first-row transition-metal complexes of the 3-hydroxy-4-[(1'S,2'R)-(2-hydroxy-1',2'-diphenylethyl)amino]-3-cyclobutene-1,2-dione ligand in alcoholic solutions resulted in the formation of the monomers [M(NH(2)C(4)O(3))(2)(H(2)O)(4)] [M = Mn (1), Co (2), Ni (3), Cu (4), Zn (5)] instead, as a result of the hydrolysis of the ligand. 1, 2, and 3 are isomorphous (C2/c), with the metal atoms octahedrally coordinated to four aqua and two cis aminosquarate ligands. The copper and zinc complexes (4 and 5) have the same molecular formula as 1-3 but belong to the C2/m and P2(1)/c space groups respectively. 4 has square-pyramidal geometry with trans-oriented aminosquarate ligands in the basal plane; aqua ligands complete the coordination sphere. 5 has octahedral geometry, with four aqua and two trans-oriented aminosquarate ligands. Reaction of aqueous solutions of the anilinosquarate ligand with Ln(NO(3))(3) x xH(2)O produced the eight-coordinate complexes {Sm(mu-C(6)H(5)NHC(4)O(3))(3)(H(2)O)(4) x 3H(2)O}n (6), {[M(mu(2)-C(4)O(4))(H(2)O)(6)][C(6)H(5)NHC(4)O(3)] x 4H(2)O}n [M = Er (7), Yb (8)], {Sm(C(6)H(5)NHC(4)O(3)) (mu(3)-C(4)O(4))(H(2)O)(4) x H(2)O}(n) (9), and {[{(C(6)H(5)NHC(4)O(3))(2)(H(2)O)(5)Yb}(2)(mu-C(4)O(4))] x 4H(2)O}n (10). 7 and 8 are isomorphous with the previously reported analogues Eu, Gd, and Tb ionic polymers. The presence of the squarate ligand in 7-10 is indicative of some form of hydrolysis of the anilinosquarate ligand during their syntheses. However, hydrolysis was not evident in the synthesis of 6. The mechanism for the hydrolysis in the syntheses of 1-5 is apparently different from that for 7-10.  相似文献   

5.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

6.
The designed synthesis and structural characterization of two metal cluster-centered metallosupramolecular architectures are reported. In complex [(CF(3)SO(3))Ag(4)((t)BuC≡C)(Py8)](CF(3)SO(3))(2) (1) and [(CF(3)SO(3))Ag(4){C≡C-(m-C(6)H(4))-C≡C-(m-C(6)H(4))-C≡C-(m-C(6)H(4))-C≡C}Ag(4)(CF(3)SO(3))(Py8)(2)](CF(3)SO(3))(4) (2), organic acetylide ligands are utilized to induce the formation of polynuclear silver aggregates, which are encapsulated into the central cavity of the neutral macrocyclic compound azacalix[8]pyridine (Py8). The tetrasilver cluster centered [2]- and [3]-pseudo-rotaxane structures are obtained and fully characterized by X-ray crystallography, ESI mass spectrometry, and (1)H NMR spectroscopy.  相似文献   

7.
In the presence of ligands such as acetonitrile, ethylene, or propylene, the Ir(I) complex [Ir(1,2,5,6-eta-C8H12)(NCMe)(PMe3)]BF4 (1) transforms into the Ir(III) derivatives [Ir(1-kappa-4,5,6-eta-C8H12)(NCMe)(L)(PMe3)]BF4 (L = NCMe, 2; eta2-C2H4, 3; eta2-C3H6, 4), respectively, through a sequence of C-H oxidative addition and insertion elementary steps. The rate of this transformation depends on the nature of L and, in the case of NCMe, the pseudo-first-order rate constants display a dependence upon ligand concentration suggesting the formation of five-coordinate reaction intermediates. A similar reaction between 1 and vinyl acetate affords the Ir(III) complex [Ir(1-kappa-4,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (7) via the isolable five-coordinate Ir(I) compound [Ir(1,2,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (6). DFT (B3LYP) calculations in model complexes show that reactions initiated by acetonitrile or ethylene five-coordinate adducts involve C-H oxidative addition transition states of lower energy than that found in the absence of these ligands. Key species in these ligand-assisted transformations are the distorted (nonsquare-planar) intermediates preceding the intramolecular C-H oxidative addition step, which are generated after release of one cyclooctadiene double bond from the five-coordinate species. The feasibility of this mechanism is also investigated for complexes [IrCl(L)(PiPr3)2] (L = eta2-C2H4, 27; eta2-C3H6, 28). In the presence of NCMe, these complexes afford the C-H activation products [IrClH(CH=CHR)(NCMe)(PiPr3)2] (R = H, 29; Me, 30) via the common cyclometalated intermediate [IrClH{kappa-P,C-P(iPr)2CH(CH3)CH2}(NCMe)(PiPr3)] (31). The most effective C-H oxidative addition mechanism seems to involve three-coordinate intermediates generated by photochemical release of the alkene ligand. However, in the absence of light, the reaction rates display dependences upon NCMe concentration again indicating the intermediacy of five-coordinate acetonitrile adducts.  相似文献   

8.
The tailoring reaction of the two adjacent nitrile ligands in cis-[PtCl(2)(RCN)(2)] (R = Me, Et, CH(2)Ph, Ph) and [Pt(tmeda)(EtCN)(2)][SO(3)CF(3)](2) (8.(OTf)(2); tmeda = N,N,N',N'-tetramethylethylenediamine) upon their interplay with N,N'-diphenylguanidine (DPG; NH=C(NHPh)(2)), in a 1:2 molar ratio gives the 1,3,5-triazapentadiene complexes [PtCl(2){NHC(R)NHC(R)=NH}] (1-4) and [Pt(tmeda){NHC(Et)NHC(Et)NH}][SO(3)CF(3)](2) (10.(OTf)(2)), respectively. In contrast to the reaction of 8.(OTf)(2) with NH=C(NHPh)(2), interaction of 8.(OTf)(2) with excess gaseous NH(3) leads to formation of the platinum(II) bis(amidine) complex cis-[Pt(tmeda){NH=C(NH(2))Et}(2)][SO(3)CF(3)](2) (9.(OTf)(2)). Treatment of trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) with 2 equiv of NH=C(NHPh)(2) in EtCN (R = Et) and CH(2)Cl(2) (R = CH(2)Ph, Ph) solutions at 20-25 degrees C leads to [PtCl{NH=C(R)NC(NHPh)=NPh}(RCN)] (11-13). When any of the trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) complexes reacts in the corresponding nitrile RCN with 4 equiv of DPG at prolonged reaction time (75 degrees C, 1-2 days), complexes containing two bidentate 1,3,5-triazapentadiene ligands, i.e. [Pt{NH=C(R)NC(NHPh)=NPh}(2)] (14-16), are formed. Complexes 14-16 exhibit strong phosphorescence in the solid state, with quantum yields (peak wavelengths) of 0.39 (530 nm), 0.61 (460 nm), and 0.74 (530 nm), respectively. The formulation of the obtained complexes was supported by satisfactory C, H, and N elemental analyses, in agreement with FAB-MS, ESI-MS, IR, and (1)H and (13)C{(1)H} NMR spectra. The structures of 1, 2, 4, 11, 13, 14, 9.(picrate)(2), and 10.(picrate)(2) were determined by single-crystal X-ray diffraction.  相似文献   

9.
The neutral and cationic dinuclear gold(I) compounds [(μ-N-N)(AuR)(2)] (N-N = 2,2'-azobispyridine (2-abpy), 4,4'-azobispyridine (4-abpy); R = C(6)F(5), C(6)F(4)OC(12)H(25)-p, C(6)F(4)OCH(2)C(6)H(4)OC(12)H(25)-p) and [(μ-N-N){Au(PR(3))}(2)](CF(3)SO(3))(2) (N-N = 2-abpy, 4-abpy, R = Ph, Me) have been obtained by displacement of a weakly coordinated ligand by an azobispyridine ligand. The corresponding silver(I) dinuclear [(μ-2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] and polynuclear [{Ag(CF(3)SO(3))(4-abpy)}(n)] compounds have been obtained. The molecular structures of [(μ-2-abpy){Au(PPh(3))}(2)](CF(3)SO(3))(2) and [(μ-4-abpy){Au(PMe(3))}(2)](CF(3)SO(3))(2) have been confirmed by X-ray diffraction studies and feature linear gold(I) centers coordinated by pyridyl groups, and non-coordinated azo groups. In contrast the X-ray structure of [(2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] shows tetracoordinated silver(I) centers involving chelating N-N coordination by pyridyl and azo nitrogen atoms. The gold(I) compounds with a long alkoxy chain do not behave as liquid crystals, and decompose before their melting point. The soluble gold(I) derivatives are photosensitive in solution and isomerize to the cis azo isomer under UV irradiation, returning photochemically or thermally to the most stable initial trans isomer. The silver(I) derivative [(2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] also photoisomerizes in solution under UV irradiation, showing that its solid state structure, which would block isomerization by azo coordination, is easily broken. These processes have been monitored by UV-vis absorption and (1)H NMR spectroscopy. All these compounds are non-emissive in the solid state, even at 77 K.  相似文献   

10.
The silver(I) coordination networks [Ag2(mu-O2CCF3)2(mu-NN)2](infinity) exist as a polymer of macrocycles or a double-stranded polymer when NN = 1,2-C6H4[NHC(O)-4-C5H4N]2 or 1,2-C6H4[NHC(O)-3-C5H4N]2, respectively. Crystal engineering of the polymers is achieved through interchain hydrogen bonds.  相似文献   

11.
The diastereomeric methyl rhenium complex [CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}(CH3)] was prepared in two steps from chiral racemic [CpRe(NO)(CO)(NCMe)]BF4 and the chiral racemic phosphine P(Me)(Ph)(2-C6H4NMe2). The unlike diastereomer reacts preferentially with MeSO3H to give the ring-closed ionic complex unlike-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 along with unreacted like-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}(CH3)], which is easily separated and converted to like-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3. Starting from (R)-P(Me)(Ph)(2-C6H4NMe2), the diastereomerically and enantiomerically pure complexes (RRe,SP)-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 and (SRe,SP)-[CpRe(NO){P(Me)(Ph)(2-C6H4NMe2)}]MeSO3 were obtained. Thus, this reaction sequence demonstrates a highly diastereoselective proton transfer from a functionalized chiral phosphine to a transition metal. Furthermore, it provides efficient access to enantiomerically pure half-sandwich rhenium complexes.  相似文献   

12.
A series of functionalized adamantanes: 1,3-bis(1,2,4-triazol-4-yl)(tr(2)ad); 1,3,5-tris(1,2,4-triazol-4-yl)-(tr(3)ad); 1,3,5,7-tetrakis(1,2,4-triazol-4-yl)adamantanes (tr(4)ad) and 3,5,7-tris(1,2,4-triazol-4-yl)-1-azaadamantane (tr(3)ada) were developed as a new family of geometrically rigid polydentate tectons for supramolecular synthesis of framework solids. The coordination compounds were prepared under hydrothermal conditions; their structures reveal a special potential of the triazolyl adamantanes for the generation of highly-connected and open frameworks as well as structures based upon polynuclear metal clusters assembled with short-distance N(1),N(2)-triazole bridges. Complexes [Cd{L}(2)]A·nH(2)O [L = tr(3)ad, A = 2NO(3)(-) (4), CdCl(4)(2-) (5); L = tr(3)ada, A = CdI(4)(2-) (7)] are isomorphous and adopt a layered 3,6-connected structure of CdI(2) type. [{Cu(3)(OH)}(2)(SO(4))(5)(H(2)O)(2){tr(3)ad}(3)]·26H(2)O (6) is a layered polymer based upon Cu(3)(μ(3)-OH) nodes and trigonal tr(3)ad links. In [Cu(3)(OH)(2){tr(3)ada}(2)(H(2)O)(4)](ClO(4))(4) (8), [Cu(2){tr(3)ada}(2)(H(2)O)(3)](SO(4))(2)·7H(2)O (9) and [Cd(2){tr(3)ada}(3)]Cl(4)·28H(2)O (10) (UCl(3)-type net) the organic tripodal ligands bridge polynuclear metal clusters. Complexes [Ag{tr(4)ad}]NO(3)·3.5H(2)O (11) and [Cu{tr(4)ad}(H(2)O)](ClO(4))(2)·3H(2)O (12) have 3D SrAl(2)-type frameworks with the metal ions and adamantane tectons as topologically equivalent tetrahedral nodes, while in [Cd(3)Cl(6){tr(4)ad}(2)]·9H(2)O (13) the ligands bridge trinuclear six-connected Cd(3)Cl(6)(μ-tr)(4)(tr)(2) clusters. In the compounds [Cd(2){tr(2)ad}(4)(H(2)O)(4)](CdBr(4))(2)·2H(2)O (2) and [Cd{tr(2)ad}(4){CdI(3)}(2)]·4H(2)O (3) the bitopic ligands provide simple links between the metal ions, while in [Ag(2){tr(2)ad}(2)](NO(3))(2)·2H(2)O (1) the ligand is tetradentate and generates a 3D framework.  相似文献   

13.
The preparation and structures of seven new silver(I) complexes involving the parent tris(pyrazolyl)methane unit, [C(pz)(3)], as the donor set, {[C6H5CH2OCH2C(pz)3]Ag}(BF4), {[C6H5CH2OCH2C(pz)3]2Ag3}(CF3SO3)3, {[HOCH2C(pz)3]Ag}(BF4), {[HOCH2C(pz)3]Ag}(CF3SO3), {[HC(pz)3]2Ag2(CH3CN)}(BF4)2, {[HC(pz)3]Ag}(PF6), and {[HC(pz)3]Ag}(CF3SO3), are reported. This project is based on a retro-design of our multitopic C6H(6-n)[CH2OCH2C(pz)3]n (pz = pyrazolyl ring, n = 2, 3, 4, and 6) family of ligands in such a way that each new ligand has one fewer organizational feature. The kappa2-kappa1 bonding mode of the [C(pz)3] units to two silvers, also observed with the multitopic ligands, is the dominant structural feature in all cases. Changing the counterion has important effects on the local structures and on crystal packing. When these structures are compared to similar ones based on the multitopic C6H(6-n)[CH2OCH2C(pz)3]n ligands, it has been shown that the presence of the rigid parts (central arene core and the [C(pz)3] units) are important in order to observe highly organized supramolecular structures. The presence of the flexible ether linkage is also crucial, allowing all noncovalent forces to manifest themselves in a cumulative and complementary manner.  相似文献   

14.
Halogenated 1,3,5-triazapentadienyl ligands [N{(C(3)F(7))C(C(6)F(5))N}(2)](-), [N{(CF(3))C(C(6)F(5))N}(2)](-) and [N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)](-), alone or in combination with other N-donors like CH(3)CN, CH(3)(CH(2))(2)CN, and N(C(2)H(5))(3), have been used in the stabilization of thermally stable, two-, three- or four-coordinate silver(i) adducts. X-Ray crystallographic analyses of {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag}(n), {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(NCCH(3))}(n), {[N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)]Ag(NCCH(3))}(n), {[N{(CF(3))C(C(6)F(5))N}(2)]Ag(NCCH(3))(2)}(n) and {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(NCC(3)H(7))}(n) revealed the presence of bridging 1,3,5-triazapentadienyl ligands bonded to silver through terminal nitrogen atoms. These adducts are polymeric in the solid state. [N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)]AgN(C(2)H(5))(3) is monomeric and features a 1,3,5-triazapentadienyl ligand bonded to Ag(I) in a κ(1)-fashion via only one of the terminal nitrogen atoms. The solid state structure of [N{(C(3)F(7))C(C(6)F(5))N}(2)]H has also been reported and it forms polymeric chains via inter-molecular N-H···N hydrogen-bonding.  相似文献   

15.
Mono- and dilithium salts of [3,3'-Co(1,2-C(2)B(9)H(11))(2)](-), (1(-)), react with different chlorosilanes (Me(2)SiHCl, Me(2)SiCl(2), Me(3)SiCl and MeSiHCl(2)) with an accurate control of the temperature to give a set of novel C(c)-mono- (C(c) = C(cluster)) and C(c)-disubstituted cobaltabis(dicarbollide) derivatives with silyl functions: [1-SiMe(2)H-3,3'-Co(1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))](-) (3(-)); [1,1'-mu-SiMe(2)-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (4(-)); [1,1'-mu-SiMeH-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (5(-)); [1-SiMe(3)-3,3'-Co(1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))](-) (6(-)) and [1,1'-(SiMe(3))(2)-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (7(-)). In a similar way, the [8,8'-mu-(1',2'-C(6)H(4))-1,1'-mu-SiMe(2)-3,3'-Co(1,2-C(2)B(9)H(9))(2)](-) (8(-)); [8,8'-mu-(1',2'-C(6)H(4))-1,1'-mu-SiMeH-3,3'-Co(1,2-C(2)B(9)H(9))(2)](-) (9(-)) and [8,8'-mu-(1',2'-C(6)H(4))-1-SiMe(3)-3,3'-Co(1,2-C(2)B(9)H(9))(1',2'-C(2)B(9)H(10))](-) (10(-)) ions have been prepared from [8,8'-mu-(1',2'-C(6)H(4))-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (2(-)). Thus, depending on the chlorosilane, the temperature and the stoichiometry of nBuLi used, it has been possible to control the number of substituents on the C(c) atoms and the nature of the attached silyl function. All compounds were characterised by NMR and UV/Vis spectroscopy and MALDI-TOF mass spectrometry; [NMe(4)]-3, [NMe(4)]-4 and [NMe(4)]-7 were successfully isolated in crystalline forms suitable for X-ray diffraction analyses. The 4(-) and 8(-) ions, which contain one bridging -mu-SiMe(2) group between each of the dicarbollide clusters, were unexpectedly obtained from the reaction of the monolithium salts of 1(-) and 2(-), respectively, with Me(2)SiHCl at -78 degrees C in 1,2-dimethoxyethane. This suggests that an intramolecular reaction has taken place, in which the acidic C(c)-H proton reacts with the hydridic Si-H, with subsequent loss of H(2). Some aspects of this reaction have been studied by using DFT calculations and have been compared with experimental results. In addition, DFT theoretical studies at the B3 LYP/6-311G(d,p) level of theory were applied to optimise the geometries of ions 1(-)-10(-) and calculate their relative energies. Results indicate that the racemic mixtures, rac form, are more stable than the meso isomers. A good concordance between theoretical studies and experimental results has been achieved.  相似文献   

16.
[Rh(nbd)(PCyp(3))(2)][BAr(F) (4)] (1) [nbd = norbornadiene, Ar(F) = C(6)H(3)(CF(3))(2), PCyp(3) = tris(cyclopentylphosphine)] spontaneously undergoes dehydrogenation of each PCyp(3) ligand in CH(2)Cl(2) solution to form an equilibrium mixture of cis-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(2)][BAr(F) (4)] (2 a) and trans-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(2)][BAr(F) (4)] (2 b), which have hybrid phosphine-alkene ligands. In this reaction nbd acts as a sequential acceptor of hydrogen to eventually give norbornane. Complex 2 b is distorted in the solid-state away from square planar. DFT calculations have been used to rationalise this distortion. Addition of H(2) to 2 a/b hydrogenates the phosphine-alkene ligand and forms the bisdihydrogen/dihydride complex [Rh(PCyp(3))(2)(H)(2)(eta(2)-H(2))(2)][BAr(F) (4)] (5) which has been identified spectroscopically. Addition of the hydrogen acceptor tert-butylethene (tbe) to 5 eventually regenerates 2 a/b, passing through an intermediate which has undergone dehydrogenation of only one PCyp(3) ligand, which can be trapped by addition of MeCN to form trans-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(PCyp(3))(NCMe)][BAr(F) (4)] (6). Dehydrogenation of a PCyp(3) ligand also occurs on addition of Na[BAr(F) (4)] to [RhCl(nbd)(PCyp(3))] in presence of arene (benzene, fluorobenzene) to give [Rh(eta(6)-C(6)H(5)X){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (7: X = F, 8: X = H). The related complex [Rh(nbd){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] 9 is also reported. Rapid ( approximately 5 minutes) acceptorless dehydrogenation occurs on treatment of [RhCl(dppe)(PCyp(3))] with Na[BAr(F) (4)] to give [Rh(dppe){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (10), which reacts with H(2) to afford the dihydride/dihydrogen complex [Rh(dppe)(PCyp(3))(H)(2)(eta(2)-H(2))][BAr(F) (4)] (11). Competition experiments using the new mixed alkyl phosphine ligand PCy(2)(Cyp) show that [RhCl(nbd){PCy(2)(Cyp)}] undergoes dehydrogenation exclusively at the cyclopentyl group to give [Rh(eta(6)-C(6)H(5)X){PCy(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (17: X = F, 18: X = H). The underlying reasons behind this preference have been probed using DFT calculations. All the complexes have been characterised by multinuclear NMR spectroscopy, and for 2 a/b, 4, 6, 7, 8, 9 and 17 also by single crystal X-ray diffraction.  相似文献   

17.
The title complex [Co[(4-C5H4N)2C(OH)(NHC3H7)]2(NO3)2]∞ was obtained and characterized through elemental analysis, FT-IR and X-ray crystallography. The complex crystallizes in space group P3(2)21 with a=10.2480(11), b=10.2480(11), c=26.943(6), β=120.00°, [Co[(4-C5H4N)2C(OH)(NHC3H7)]2(NO3)2]∞, C28H34CoN8O8 , Mr=669.56, Z=3, V=2450.5(7)3 , Dc=1.361 g·cm-3 , μ=0.584 mm-1 , F(000)=1047, R=0.0498 and wR=0.1301. The Co(Ⅱ) center exhibits a N4O2-octahedral coordination geometry surrounded by a pair of nitrates at the axial positions and four pyridyl N atoms at the equatorial sites. An infinite double-bridged chain structure with μ2-bridging (4-C5H4N)2C(OH)(NHC3H7) ligands is formed, which is the in situ product of metal-promoted nucleophilic addition reaction of propan-1-amine with di-4-pyridinylmethanone ((4-C5H4N)2CO) in the presence of Co(NO3)2·6H2O. It is the first tertiary carbinol metal complex derived from di-4-pyridinylmethanone so far, and also the rare example of tertiary carbinol derivative of dipyridylmethanone family. The nucleophilic reaction at the carbonyl of dipyridylmethanone in the presence of metal salt will be discussed.  相似文献   

18.
Zhang T  Kong J  Hu Y  Meng X  Yin H  Hu D  Ji C 《Inorganic chemistry》2008,47(8):3144-3149
Two silver(I) pyridyldiethynides, [Ag2(3,5-C2PyC2).4CF3CO2Ag.4H2O] ( A) and [Ag 2(3,5-C2PyC2).3AgNO3.H2O](B), were synthesized by reactions of 3,5-diethynylpyridine with silver trifluoroacetate and silver nitrate in high yield, respectively. X-ray crystallographic studies revealed that in A pyridyldiethynide groups connect Ag 11 cluster units to generate 1D supramolecular chains as bridging ligands, where each ethynide group interacts with four silver atoms. These supramolecular chains bearing pyridyl groups are linked by silver ions to form wavelike layers, which are further connected by trifluoroacetate ligands to afford a 3D coordination network. However, B exhibits a different structural feature, where two ethynide groups in one pyridyldiethynide ligand coordinate to three and four silver atoms, respectively. These silver ethynide cluster units are linked through silver-ethynide and argentophilic interactions, leading to a double silver chain by sharing silver atoms in these units. In B, the silver double chains are further connected by bridging pyridyldiethynide groups to generate 2D networks, which interact through the Ag-N coordination bonds between silver atoms and pyridyl groups in the adjacent layers to generate a 3D coordination network. In these two compounds, trifluoroacetate and nitrate groups exhibit different bonding modes, indicating that the counterion is an important factor influencing the structures of supramolecular chains and coordination networks.  相似文献   

19.
Reaction of 1,1-difluoroallene and tetrafluoroallene with a series of transition metal complex fragments yields the mononuclear allene complexes [CpMn(CO)(2)(allene)] (1), [(CO)(4)Fe(allene)] (2), [(Ph(3)P)(2)Pt(C(3)H(2)F(2))] (4), [Ir(PPh(3))(2)(C(3)H(2)F(2))(2)Cl] (5), and the dinuclear complexes [mu-eta(1)-eta(3)-C(3)H(2)F(2))Fe(2)(CO)(7)] (3), [Ir(PPh(3))(C(3)H(2)F(2))(2)Cl](2) (6), and [mu-eta(2)-eta(2)-C(3)H(2)F(2))(CpMo(CO)(2))(2)] (9), respectively. In attempts to synthesize cationic complexes of fluorinated allenes [CpFe(CO)(2)(C(CF(3))=CH(2))] (7a), [CpFe(CO)(2)(C(CF(3))=CF(2))] (7b) and [mu-I-(CpFe(CO)(2))(2)][B(C(6)H(3)-3,5-(CF(3))(2))(4)] were isolated. The spectroscopic and structural data of these complexes revealed that the 1,1-difluoroallene ligand is coordinated exclusively with the double bond containing the hydrogen-substituted carbon atom. 1,1-Difluoroallene and tetrafluoroallene proved to be powerful pi acceptor ligands.  相似文献   

20.
The self-assembly of extended metal-containing arrays is described based on dynamic coordination chemistry at mercury(II) with bis(amidopyridyl) ligands to form macrocycles, polymers, or sheets which can be further organized by hydrogen bonding between amide substituents. The ligands 1,2-C6H4[NHC(O)-4-C5H4N]2, 1, 1,2-C(6)H(4)[C(O)NHCH(2)-4-C(5)H(4)N](2), 2, and 1,2-C(6)H(4)[CH(2)C(O)NHCH(2)-4-C(5)H(4)N]2, 3 can adopt polar conformations and so can confer helicity in their complexes. Several macrocycles of formula [(HgX(2))(2)(micro-LL)(2)] (LL = 1, 2), with tetrahedral mercury(II) centers, were prepared in which individual molecules are further self-assembled via hydrogen bonding in the solid state to form one- or two-dimensional polymers or sheets. In one case, a one-dimensional polymer [((HgX2)-(mu-3))n] was formed. It is shown that the mercury(II) centers can be six-coordinate in forming the sheet structure [((HgX2)(mu-2)2)n], in which there are particularly large pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号