首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, motivated by Alikhanov's new work (Alikhanov, J Comput Phys 280 (2015), 424–438), some difference schemes are proposed for both one‐dimensional and two‐dimensional time‐fractional wave equations. The obtained schemes can achieve second‐order numerical accuracy both in time and in space. The unconditional convergence and stability of these schemes in the discrete H1‐norm are proved by the discrete energy method. The spatial compact difference schemes with the results on the convergence and stability are also presented. In addition, the three‐dimensional problem is briefly mentioned. Numerical examples illustrate the efficiency of the proposed schemes. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 970–1001, 2016  相似文献   

2.
Difference schemes for second-order ordinary and partial differential equations with a fractional time derivative are considered. Stationary and nonstationary problems for the diffusion equation in one-and multidimensional domains are examined separately. The stability and convergence of the difference schemes for these equations are proved.  相似文献   

3.
In this paper, the finite difference scheme is developed for the time-space fractional diffusion equation with Dirichlet and fractional boundary conditions. The time and space fractional derivatives are considered in the senses of Caputo and Riemann-Liouville, respectively. The stability and convergence of the proposed numerical scheme are strictly proved, and the convergence order is O(τ2−α+h2). Numerical experiments are performed to confirm the accuracy and efficiency of our scheme.  相似文献   

4.
In this paper, we develop a practical numerical method to approximate a fractional diffusion equation with Dirichlet and fractional boundary conditions. An approach based on the classical Crank–Nicolson method combined with spatial extrapolation is used to obtain temporally and spatially second‐order accurate numerical estimates. The solvability, stability, and convergence of the proposed numerical scheme are proved via the Gershgorin theorem. Numerical experiments are performed to confirm the accuracy and efficiency of our scheme.  相似文献   

5.
In this paper, a fast high order difference scheme is first proposed to solve the time fractional telegraph equation based on the ℱℒ 2-1σ formula for the Caputo fractional derivative, which reduces the storage and computational cost for calculation. A compact scheme is then presented to improve the convergence order in space. The unconditional stability and convergence in maximum norm are proved for both schemes, with the accuracy order and , respectively. Difficulty arising from the two Caputo fractional derivatives is overcome by some detailed analysis. Finally, we carry out numerical experiments to show the efficiency and accuracy, by comparing with the ℒ 2-1σ method.  相似文献   

6.
7.
A high order finite difference-spectral method is derived for solving space fractional diffusion equations,by combining the second order finite difference method in time and the spectral Galerkin method in space.The stability and error estimates of the temporal semidiscrete scheme are rigorously discussed,and the convergence order of the proposed method is proved to be O(τ2+Nα-m)in L2-norm,whereτ,N,αand m are the time step size,polynomial degree,fractional derivative index and regularity of the exact solution,respectively.Numerical experiments are carried out to demonstrate the theoretical analysis.  相似文献   

8.
In this paper, a fast second‐order accurate difference scheme is proposed for solving the space–time fractional equation. The temporal Caputo derivative is approximated by ?L2 ‐1σ formula which employs the sum‐of‐exponential approximation to the kernel function appeared in Caputo derivative. The second‐order linear spline approximation is applied to the spatial Riemann–Liouville derivative. At each time step, a fast algorithm, the preconditioned conjugate gradient normal residual method with a circulant preconditioner (PCGNR), is used to solve the resulting system that reduces the storage and computational cost significantly. The unique solvability and unconditional convergence of the difference scheme are shown by the discrete energy method. Numerical examples are given to verify numerical accuracy and efficiency of the difference schemes.  相似文献   

9.
The Grünwald formula is used to solve the one‐dimensional distributed‐order differential equations. Two difference schemes are derived. It is proved that the schemes are unconditionally stable and convergent with the convergence orders and in maximum norm, respectively, where and are step sizes in time, space and distributed order. The extrapolation method is applied to improve the approximate accuracy to the orders and respectively. An illustrative numerical example is given to confirm the theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 591–615, 2016  相似文献   

10.
This is the further work on compact finite difference schemes for heat equation with Neumann boundary conditions subsequent to the paper, [Sun, Numer Methods Partial Differential Equations (NMPDE) 25 (2009), 1320–1341]. A different compact difference scheme for the one‐dimensional linear heat equation is developed. Truncation errors of the proposed scheme are O2 + h4) for interior mesh point approximation and O2 + h3) for the boundary condition approximation with the uniform partition. The new obtained scheme is similar to the one given by Liao et al. (NMPDE 22 (2006), 600–616), while the major difference lies in no extension of source terms to outside the computational domain any longer. Compared with ones obtained by Zhao et al. (NMPDE 23 (2007), 949–959) and Dai (NMPDE 27 (2011), 436–446), numerical solutions at all mesh points including two boundary points are computed in our new scheme. The significant advantage of this work is to provide a rigorous analysis of convergence order for the obtained compact difference scheme using discrete energy method. The global accuracy is O2 + h4) in discrete maximum norm, although the spatial approximation order at the Neumann boundary is one lower than that for interior mesh points. The analytical techniques are important and can be successfully used to solve the open problem presented by Sun (NMPDE 25 (2009), 1320–1341), where analyzed theoretical convergence order of the scheme by Liao et al. (NMPDE 22 (2006), 600–616) is only O2 + h3.5) while the numerical accuracy is O2 + h4), and convergence order of theoretical analysis for the scheme by Zhao et al. (NMPDE 23 (2007), 949–959) is O2 + h2.5), while the actual numerical accuracy is O2 + h3). Following the procedure used for the new obtained difference scheme in this work, convergence orders of these two schemes can be proved rigorously to be O2 + h4) and O2 + h3), respectively. Meanwhile, extension to the case involving the nonlinear reaction term is also discussed, and the global convergence order O2 + h4) is proved. A compact ADI difference scheme for solving two‐dimensional case is derived. Finally, several examples are given to demonstrate the numerical accuracy of new obtained compact difference schemes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
The numerical solution for the one‐dimensional complex fractional Ginzburg–Landau equation is considered and a linearized high‐order accurate difference scheme is derived. The fractional centered difference formula, combining the compact technique, is applied to discretize fractional Laplacian, while Crank–Nicolson/leap‐frog scheme is used to deal with the temporal discretization. A rigorous analysis of the difference scheme is carried out by the discrete energy method. It is proved that the difference scheme is uniquely solvable and unconditionally convergent, in discrete maximum norm, with the convergence order of two in time and four in space, respectively. Numerical simulations are given to show the efficiency and accuracy of the scheme. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 105–124, 2017  相似文献   

12.
We propose and analyze several finite difference schemes for the Hunter-Saxton equation

(HS)

This equation has been suggested as a simple model for nematic liquid crystals. We prove that the numerical approximations converge to the unique dissipative solution of (HS), as identified by Zhang and Zheng. A main aspect of the analysis, in addition to the derivation of several a priori estimates that yield some basic convergence results, is to prove strong convergence of the discrete spatial derivative of the numerical approximations of , which is achieved by analyzing various renormalizations (in the sense of DiPerna and Lions) of the numerical schemes. Finally, we demonstrate through several numerical examples the proposed schemes as well as some other schemes for which we have no rigorous convergence results.

  相似文献   


13.
In this paper, we propose two implicit compact difference schemes for the fractional cable equation. The first scheme is proved to be stable and convergent in l-norm with the convergence order O(τ + h4) by the energy method, where new inner products defined in this paper gives great convenience for the theoretical analysis. Numerical experiments are presented to demonstrate the accuracy and effectiveness of the two compact schemes. The computational results show that the two new schemes proposed in this paper are more accurate and effective than the previous.  相似文献   

14.
15.
16.
In this article, we study an inverse problem with inhomogeneous source to determine an initial data from the time fractional diffusion equation. In general, this problem is ill-posed in the sense of Hadamard, so the quasi-boundary value method is proposed to solve the problem. In the theoretical results, we propose a priori and a posteriori parameter choice rules and analyze them. Finally, two numerical results in the one-dimensional and two-dimensional case show the evidence of the used regularization method.  相似文献   

17.
For the multidimensional heat equation in a parallelepiped, optimal error estimates inL 2(Q) are derived. The error is of the order of +¦h¦2 for any right-hand sidef L 2(Q) and any initial function ; for appropriate classes of less regularf andu 0, the error is of the order of ((+¦h¦2 ), 1/2<1.Translated fromMatematicheskie Zametki, Vol. 60, No. 2, pp. 185–197, August, 1996.  相似文献   

18.
Incorporating subdiffusive mechanisms into the Klein‐Kramers formalism leads to the fractional Klein‐Kramers equation. Then, the equation can effectively describe subdiffusion in the presence of an external force field in the phase space. This article presents the finite difference methods for numerically solving the fractional Klein‐Kramers equation and does the detailed stability and error analyses. The stability condition, mvβ ≤ 16, shows the ratio between the kinetic energy of the particle and the temperature of the fluid can not be too large, which well agrees with the physical property of the subdiffusive particle, we call it “physical constraint.” The numerical examples are provided to verify the theoretical results on rate of convergence. Moreover, we simulate the fractional Klein‐Kramers dynamics and the simulation results further confirm the effectiveness of our numerical schemes. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1561–1583, 2010  相似文献   

19.
《Applied Mathematical Modelling》2014,38(15-16):3802-3821
In this paper, our aim is to study the high order finite difference method for the reaction and anomalous-diffusion equation. According to the equivalence of the Riemann–Liouville and Grünwald–Letnikov derivatives under the suitable smooth condition, a second-order difference approximation for the Riemann–Liouville fractional derivative is derived. A fourth-order compact difference approximation for second-order derivative in spatial is used. We analyze the solvability, conditional stability and convergence of the proposed scheme by using the Fourier method. Then we obtain that the convergence order is O(τ2+h4), where τ is the temporal step length and h is the spatial step length. Finally, numerical experiments are presented to show that the numerical results are in good agreement with the theoretical analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号