首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
扫描隧道显微镜 ( STM)是一种基于量子隧道效应对样品进行高分辨无损测试的表面测试技术 [1] ,它可以在原子水平上反映表面分子或原子的排列分布情况 ,在物理、化学、生物和微电子界受到高度的重视 .STM技术以及其后发展起来的原子力显微镜 ( AFM)特别适合 LB膜的研究 ,能直观地反映出 LB膜中分子排列的微观结构以及表面缺陷 [2 ,3] .我们曾通过真空热解沉积在单晶硅片上的聚酰亚胺L B膜制得了准单晶β- Si C超薄膜 [4~ 6 ] .本文利用 STM技术对聚酰亚胺 LB膜以及由它真空热解而成的 Si C膜的表面形态结构进行了初步观察和分析 .…  相似文献   

2.
Effects of polymer surface structures on surface alignment of liquid crystal molecules were studied by comparison with our previous results of molecular dynamics simulations. An adsorption-related liquid crystal molecule alignment on the packed polyimide surface was found in the simulation study. In this article, we first compared the alignment on a sparse polyimide surface with the previous results of the packed polyimide surface to see effects of polymer surface density. The excluded volume effect with the polyimide domain edges additionally contributed to alignment of the liquid crystal molecules on the sparse surface, and resulted in a similar alignment structure (i.e. alignment direction and tilt angle) to the packed cases. Secondly, we made similar simulations by changing the polymer from a polyimide to a polyamide with similar polymer chain density. Differences between the corresponding packed polyimide case were found mainly in the energetics (the polyamide had about two thirds of the adsorption energy of the liquid crystal molecule as the polyimide did). The alignment structures were not so different.  相似文献   

3.
A number of polyimide films incorporated with different amounts of octa(aminopropylsilsesquioxane) (POSS-NH2) were prepared from 1,2,4,5-Benzenetetracarboxylic anhydride, 4,4′-Oxydianiline and POSS-NH2. The structure and properties of the hybrid polyimide films were characterized and evaluated. It is found that, compared with pure polyimide without POSS-NH2, the thermal stabilities and electrical capabilities of hybrid polyimide films are improved. Meanwhile, the incorporation of POSS-NH2 also brings improvement in the flexibility of polyimide films.  相似文献   

4.
The mesoscopic simulation technique was applied to describe the phase separation behavior of polyimide blends and used for design of immiscible polyimide/BN blend films with enhanced thermal conductivity. The simulation equilibrium morphologies of different poly(amic acid)(PAA) blend systems were investigated and compared with optical images of corresponding polyimide blend films obtained by experiment. The immiscible polyimide blend films containing nano-/micro-sized BN with vertical double percolation structure were prepared. The result indicated that the thermal conductivity of polyimide blend film with 25 wt% nano-sized BN reached1.16 W/(m·K), which was 236% increment compared with that of the homogenous film containing the same BN ratio. The significant enhancement in thermal conductivity was attributed to the good phase separation of polyimide matrix, which made the inorganic fillers selectively localized in one continuous phase with high packing density, consequently, forming the effective thermal conductive pathway.  相似文献   

5.
In this study, a series of [3-(2-aminoethyl)amino]propyl-heptaisobutyl substituted polyhedral oligomeric silsesquioxane (AHIP) containing polyimide (PI) nanocomposites were successfully prepared. Structural, thermal and electrical properties of the polyimide nanocomposites were studied. The properties of AHIP containing polyimides were compared with those of the neat polyimide films. The surface morphology of the prepared AHIP containing polyimides were determined by using Scanning Electron Microscopy (SEM). The hydrophilic/hydrophobic nature of AHIP/polyimide composites were analyzed by measuring their water contact angles. It was found that the addition of AHIP into the polyimide slightly increased the contact angle values. The incorporation of 5% AHIP to the PI matrix decreased the dielectric constant value of pure PI from 8.6 to 11.7, respectively. Furthermore he dielectric permittivity was changed from 8.6 (neat polyimide) to 5.5 (PI3).  相似文献   

6.
A series of polyimide/SnO2 hybrid membranes supported on TiO2/kieselguhr-mullite were prepared from polyimide with a large amount of carboxyl and SnO2 sol via a sol-gel process. The SnO2 phase chemically linked with the polyimide through the pendant carboxyl along the polyimide. The hybrid membranes were highly homogeneous, and when the SnO2 contents reached 15wt% the SnO2 phase was observed as particles with a diameter of 5 nm dispersed in the hybrid membranes . The cross-linking between the SnO2 phase and polyimide effectively enhanced the glass temperature of the hybrid films. With the increasing of the SnO2 contents, the pore sizes of the membranes decreased, and their pore sizes were mainly focused on 3.8, 3.1, 2.8 and 2.4 nm. The hybrid membranes showed higher permeability for H2, CO2, CO and H2O when compared to the pure polyimide. The separation factors of the polyimide/SnO2 hybrid membranes with 15wt% SnO2 content for H2/N2, CO2/N2, CO/N2 and H2O/N2 were 54.1, 30.2, 35.9 and 40.1, respectively.  相似文献   

7.
Polyimide nanocomposites having low-k and UV shielding properties have been developed using fluorine functionalized graphene oxide and bis(quinoline amine) based polyimide. The polyimide was synthesized using bis(quinoline amine) and pyromellitic dianhydride at appropriate experimental conditions, and its molecular structure was confirmed through various spectral analysis such as FTIR and NMR. The polyimide (PI) composites were prepared using bis(quinoline amine), pyromellitic dianhydride, and separately filled with 1, 5, 10 wt% of fluorinated graphene oxide (FGO) through in situ polymerization. The polymer composites were characterized using thermo gravimetric analysis (TGA), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). In addition, the water contact angle, dielectric behavior, and UV–Vis shielding behavior of FGO/PI composites were evaluated. The value of the water contact angle of the polyimide was increased with increment of FGO in the polyimide matrix. The highest water contact angle of polyimide composites observed 108° was obtained for 15 wt% FGO reinforced polyimide composite. The value of the dielectric constant for neat, 1, 5, and 15 wt% FGO reinforced polyimide composites was obtained as 4.5, 3.7, 2.6, and 2.0, respectively. It is also observed from by UV–Vis spectroscopy analysis that the FGO reinforced polyimide composites have good UV shielding behavior.  相似文献   

8.
采用静电纺丝技术,以联苯四甲酸二酐(BPDA)和4,4'-二氨基二苯醚(ODA)为单体,硝酸银为银源,通过两步法制备含银聚酰亚胺(PI/Ag)纳米纤维.通过X射线衍射(XRD)、透射电子显微镜(TEM)及扫描电子显微镜(SEM)表征了PI/Ag纳米纤维的结构和微观形貌;通过浸渍培养法研究了聚酰亚胺(PI)及PI/Ag纳米纤维的抑菌性能.结果表明,聚酰亚胺基体中存在单质银的立方晶体结构,银粒子在聚酰亚胺基体表面均匀分散,平均粒径为10 nm;PI/Ag纳米纤维对大肠杆菌(E.coli)、金黄色葡萄球菌(S.aureus)和枯草芽孢杆菌(B.subtilis)表现出良好的抑菌效果,最大抑菌率可达99.1%,为聚酰亚胺在耐高温抑菌生物医用材料等领域的应用提供了新的方向.  相似文献   

9.
Polyimides are widely used as chip passivation layers and organic substrates in microelectronic packaging. Plasma treatment has been used to enhance the interfacial properties of polyimides, but its molecularmechanism is not clear. In this research, the effects of polyimide surface plasma treatment on the molecular structures at corresponding polyimide/air and buried polyimide/epoxy interfaces were investigated in situ using sum frequency generation (SFG) vibrational spectroscopy. SFG results show that the polyimide backbone molecular structure was different at polyimide/air and polyimide/epoxy interfaces before and after plasma treatment. The different molecular structures at each interface indicate that structural reordering of the polyimide backbone occurred as a result of plasma treatment and contact with the epoxy adhesive. Furthermore, quantitative orientation analysis indicated that plasma treatment of polyimide surfaces altered the twist angle of the polyimide backbone at corresponding buried polyimide/epoxy interfaces. These SFG results indicate that plasma treatment of polymer surfaces can alter the molecular structure at corresponding polymer/air and buried polymer interfaces.  相似文献   

10.
Mechanical properties of polyimide films are degraded by exposure to a low earth orbit environment. The main environmental factor for that degradation is atomic oxygen (AO). Using tensile tests, AO-irradiated surface topography observations, and fracture surface analyses, this study investigated the degradation behavior of polyimide films’ mechanical properties by increased AO fluence and its accompanying degradation mechanisms. Tensile strength and elongation of polyimide films were reduced concomitantly with increased AO fluence. Furthermore, AO-irradiated polyimide films fractured from the AO-irradiated surfaces, of which roughness became marked as AO fluence increased. These results reflect that reduction of mechanical properties is attributable to the roughness increase in AO-irradiated surfaces. Polyimide films coated with indium tin oxide (ITO) were also evaluated to confirm the degradation behavior of AO protective films. Surfaces of ITO-coated polyimide films remained smooth even after AO irradiation. However, undercut cavities were formed at ITO coating defect sites. Rupture of ITO-coated polyimide films initiates from the undercut cavities, engendering large reduction of tensile strength and elongation. The degradation of the mechanical properties of ITO-coated polyimide films increased substantially until the undercut cavities fully penetrated the film.  相似文献   

11.
杂化材料作为一种新型材料结合了有机无机材料的优异特性,具有较高的热稳定性、机械强度和某些特殊的化学性质,在微电子、光电设备、传感器和分离膜等诸多领域得到应用与研究.溶胶凝胶法作为合成杂化材料的主要手段,具有反应条件温和,可通过调配反应参数来控制杂化材料的微观形态和性质等优点.  相似文献   

12.
Contact angle relaxation studies were performed on a base hydrolyzed PMDA-ODA polyimide surface using methanol, pyridine and 1-methyl-2-pyrrolidinone (NMP) as probe liquids. The results were fitted parametrically to the molecular-kinetic theory to obtain the relevant molecular parameters that govern wetting rates. The probe liquid NMP appeared to have the greatest interaction of the three solvents studied with the modified polyimide surface. The differences in wetting rates are explained to result from the hydrogen bonding capability of the probe liquids with the modified polyimide surface and due to the difference between bulk and surface pKa of the modified polyimide.  相似文献   

13.
以异山梨醇为原料,合成了含异山梨醇的二胺单体.将该单体与4,4′-(六氟异丙基)双邻苯二甲酸二酐(6FDA)反应,制备了含异山梨醇结构单元的聚酰亚胺.采用红外光谱、氢核磁共振、紫外光谱和热分析等手段,对产物的结构、热性能及光学性能等进行了表征.结果表明,所得到的聚酰亚胺具有较好的热稳定性和光学性能、并在极性溶剂中具有较好的溶解性.  相似文献   

14.
聚酰亚胺是一种很有发展前途的高分子材料,热膨胀系数高的问题限制了聚酰亚胺的应用,降低热膨胀系数已成为聚酰亚胺研究热点之一。本文概述了国内外关于降低聚酰亚胺薄膜热膨胀系数的主要方法:分子结构设计法、共聚法、树脂共混法、添加纳米粒子法。阐述了工艺因素(如涂膜方式、牵伸条件等)对聚酰亚胺热膨胀系数的影响,并对未来低热膨胀系数聚酰亚胺薄膜的发展方向进行了展望。  相似文献   

15.
在原位聚合制备氧化石墨烯/聚酰亚胺复合材料的过程中,加入季铵盐表面活性剂,抑制氧化石墨烯在高温亚胺化时的聚集,同时将氧化石墨烯原位还原,获得高介电常数的石墨烯/聚酰亚胺复合材料.结果表明,采用四丁基溴化铵和四丁基碘化铵作为还原剂,利用原位化学还原方法所制备的石墨烯/聚酰亚胺复合材料的介电常数超过聚酰亚胺薄膜40倍以上,复合材料的热稳定性和机械性能也优于聚酰亚胺薄膜.热重分析结果表明,在复合材料高温亚胺化过程中,季铵盐发生热分解,未残留在复合材料中.  相似文献   

16.
反相非水乳液法制备聚酰亚胺微球   总被引:1,自引:0,他引:1  
在N,N-二甲基甲酰胺(DMF)/Pluronic-F127、十二烷基苯磺酸钠(SDBS)/液体石蜡(LP)反相非水乳液体系中,以均苯四甲酸二酐(PMDA)和4,4′-二氨基二苯醚(ODA)为单体合成聚酰胺酸(PAA),采用吡啶/乙酸酐脱水剂,对PAA化学酰亚胺化,并进一步热酰亚胺化,制得PI耐热微球.产物通过红外、热重、扫描电镜表征.结果表明,较高的固含量和良好的乳液分散性有利于PI微球的形成;反相非水乳液体系稳定的配比条件是,VDMF∶VLP为1∶4,MF127∶MSDBS为3:2,乳化剂用量为9 wt%;在此配比条件下,当固含量为20%,热酰亚胺化温度不高于330℃时,可制得分散良好、球形规整、高热稳定性的PI微球,其粒径约为10μm.  相似文献   

17.
聚酰亚胺/二氧化硅纳米尺度复合材料的研究   总被引:72,自引:0,他引:72  
通过正硅酸乙酯(TEOS)在聚酰胺酸(PAA)的N,N’ 二甲基乙酰胺(DMAc),溶液中进行溶胶 凝胶反应,制备出不同二氧化硅含量的聚酰亚胺/二氧化硅(PI/SiO2)复合薄膜材料.二氧化硅含量低于10wt%的样品是透明浅黄色薄膜;二氧化硅含量高于10wt%的样品是不透明棕黄色薄膜.利用红外光谱、扫描电镜、热失重分析、动态力学分析、热膨胀系数测试和应力 应变测试等方法研究了此类材料的结构与性能.结果表明,PI/SiO2纳米复合材料具有较聚酰亚胺更高的热稳定性和更高的模量;线膨胀系数显著降低;拉伸强度和断裂伸长随二氧化硅含量而变化,分别在10wt%和30wt%附近出现最大值  相似文献   

18.
In this study, the water permeability, the rejection property of sucrose and glucose, the fouling property of humic acid as the foulant for a novel porous fluorinated polyimide membrane made by combining the ion irradiation and plasma treatment have been reported. First, an asymmetric polyimide membrane with a defect‐free and thin skin layer was prepared, then ions on the skin layer were irradiated and the ion‐irradiated layer was treated by plasma to form nanopores in the layer. The asymmetric polyimide membranes with a defect‐free skin layer were irradiated with 50 keV He+ at 1 × 1015 ions/cm2, and the irradiated polyimide surfaces were treated by Ar glow discharge. The porous polyimide membrane showed a high water flux and excellent rejection properties and fouling resistance when compared with NTR‐7250, which is commercially available. These findings indicated that the pore size formed on the porous polyimide membrane was effectively controlled by the plasma treatment time and the skin layer thickness. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Recently, mesoporous silica was blended with polyimide to develop low dielectric constant (k) materials with improving mechanical and thermal properties of polyimide by utilizing both the nanoporous structure and silica framework. However, even the use of mesoporous silica did not show a significant decrease of k due to the phase segregation in between polyimide and the mesoporous silica materials. In this work, we attempted to prepare polyimide/mesoporous silica hybrid nanocomposites having relatively good phase mixing behavior by utilizing polyimide synthesized from a water soluble poly(amic acid) ammonium salt, which lead to low k up to 2.45. The thermal properties of polyimide were improved by adding mesoporous silicas. For this work, we have fabricated mesoporous silicas through surfactant-templated condensation of tetraethyl orthosilicate (TEOS). Pyromellitic dianhydride (PMDA)-4,4′-oxydianiline (ODA) polyimide was prepared from poly(amic acid) ammonium salt, which had been obtained by incorporating triethylamine (TEA) into PMDA-ODA poly(amic acid) in dimethylacetamide (DMAc), followed by thermal imidization.  相似文献   

20.
Poly(amic acid) was synthesized with a low‐temperature solution polymerization of 3,3′‐dihydroxybenzidine and pyromellitic dianhydride in N,N‐dimethylacetamide. The cast films were thermally treated at various temperatures. The polyimide containing the hydroxyl group was rearranged by decarboxylation, resulting in a fully aromatic polybenzoxazole at temperatures higher than 430 °C. These stepwise cyclizations were monitored with elemental analysis, Fourier transform infrared, and nuclear magnetic resonance. Microanalysis results confirmed the chemical compositions of poly(amic acid), polyimide, and polybenzoxazole, respectively. A cyclodehydration from poly(amic acid) to polyimide occurred between 150 and 250 °C in differential scanning calorimetry, and a cyclodecarboxylation to polybenzoxazole appeared at 400–500 °C. All the samples were stable up to 625 °C in nitrogen and displayed excellent thermal stability. Polybenzoxazole showed better thermal stability than polyimide, but polyimide exhibited better mechanical properties than polybenzoxazole. However, polyimide showed a crystalline pattern under a wide‐angle X‐ray, whereas polybenzoxazole was amorphous. The precursor poly(amic acid) was readily soluble in a variety of solvents, whereas the polyimide and polybenzoxazole were not soluble at all. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2537–2545, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号