首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)的B3LYP方法对以苯基吡唑ppz为主配体的4种Ir配合物Ir(ppz)3, Ir(ppz)2(acac), Ir(ppz)2(pic)和Ir(ppz)2(dbm)的电子结构和光谱性质进行了理论研究. 计算结果表明, 辅助配体的改变对Ir配合物的最高占据轨道(HOMO)的影响不大, 但会显著的降低分子最低空轨道(LUMO)的能级, 从而调节Ir配合物的HOMO和LUMO间的能隙. 4种配合物对应的发射跃迁分别为Ir(ppz)3:d(Ir)+π(ppz)→π*(ppz); Ir(ppz)2(pic):d(Ir)+(ppz)→π*(pic); Ir(ppz)2(acac), Ir(ppz)2(dbm):d(Ir)+π(acacdbm)→π*(acacdbm). 金属配合物的发光颜色可以通过选择合适的辅助配体调节.  相似文献   

2.
利用环金属配体2-(4',6'-二氟苯基)吡啶(dfppy)和副配体2,2'-联嘧啶(bpm)合成了一个铱配合物[Ir(dfppy)z(bpm)]Cl,通过1H NMR,质谱,元素分析及红外光谱对其进行了表征,并且测定了其晶体结构.同时利用得到的中间配合物[Ir(dfppy):(bpm)] [Ir(dfppy)2(Cl)2]n晶体结构讨论了配合物形成过程.对配合物[Ir(dfppy)2(bpm)]Cl的紫外可见吸收光谱和发光光谱的研究表明,其常温发射位于609 nm处,初步推测该磷光发射可能来自金属到配体的电荷转移(MLCT)跃迁和配体自身,π→π*跃迁(LC)的混合.  相似文献   

3.
一种新型吡嗪铱(Ⅲ)配合物的合成及其磷光性质   总被引:2,自引:0,他引:2  
利用5-甲基-2,3-二苯基吡嗪(MDPP)和水合三氯化铱(IrCl3•H2O),合成了一种新型吡嗪铱配合物Ir (MDPP)2 (acac).通过1H NMR、元素分析和质谱方法对配合物结构进行了表征,并研究了配合物的吸收光谱和光致发光光谱.结果表明,配合物Ir (MDPP)2(acac)在393和528 nm处存在单重态1MLCT(金属到配体的电荷跃迁)和三重态3MLCT的吸收;在588 nm 处有较强的金属配合物三重态的磷光发射,是一种绿色磷光材料.  相似文献   

4.
刘恒  罗彩芹 《化学通报》2014,77(4):382-384
利用环金属配体2-苯基吡啶(ppy)和辅助配体2,2'-联吡啶-3,3’-二羧酸(H2dcbpy)合成了一个铱配合物[Ir(ppy)2(Hdcbpy)],并且测定了其晶体结构。通过对配合物的紫外可见吸收光谱和发光光谱的研究表明,其常温发射位于620nm处,初步推测该磷光发射可能来自由金属到环金属配体和辅助配体的电荷转移(MLCT)跃迁。  相似文献   

5.
利用环金属配体2-苯基吡啶(ppy)和辅助配体2,2'-联吡啶-3,3’-二羧酸(H2dcbpy)合成了一个铱配合物[Ir(ppy)2(Hdcbpy)],并且测定了其晶体结构。通过对配合物的紫外可见吸收光谱和发光光谱的研究表明,其常温发射位于620nm处,初步推测该磷光发射可能来自由金属到环金属配体和辅助配体的电荷转移(MLCT)跃迁。  相似文献   

6.
采用密度泛函理论以及B3LYP方法和单激发组态相互作用(CIS)方法分别优化了一系列[Os(II)(CO)3(tfa)(L)](tfa为三氟乙酸;L=O^O(1),O^N(2),N^N(3),其中O^O为六氟乙酰丙酮,O^N为羟基喹啉,N^N为3-(三氟甲基)-5-(2-吡啶基)吡唑)配合物的基态和激发态结构.利用含时密度泛函理论(TD-DFT)结合极化连续溶剂化模型(PCM)计算了配合物在CH2Cl2溶液中的吸收和发射光谱.研究结果表明,优化得到的几何结构参数和相应的实验值符合得非常好,激发态几何构型相对基态变化较小,这与实验上观察到的较小的斯托克斯频移现象一致.配合物1-3的最低能吸收分别在342、431和329nm,其磷光发射分别在521、638和488nm.配合物1-3的最高占据分子轨道和最低空轨道主要表现为L配体的π和π*轨道特征,所以它们的最低能吸收归属于π-π*电荷跃迁,并混有少量的金属到配体的电荷跃迁(MLCT)和配体之间电荷跃迁(LLCT)微扰,且其高能吸收也表现为配体内部(IL)和配体间(LL)的电荷跃迁.此外,它们的磷光发射和吸收有相似的跃迁特征.  相似文献   

7.
利用环金属化配体2-(2’,4’-二氟苯基)-4-甲基吡啶(dfpmpy)和辅助配体5-(三氟甲基)-2-吡啶甲酸(tfmpic)合成了一个铱配合物[Ir(dfpmpy)2(tfmpic)],并测定了该配合物的光物理和电化学性质。在乙腈溶液中,配合物发射黄色磷光,其最大波长位于554 nm,理论计算表明其磷光来自于金属和环金属化配体到辅助配体或配体间的电荷转移跃迁(3MLCT或3LLCT)。  相似文献   

8.
采用微波辐射加热方法,将2,3-二苯基喹喔啉(DPQ)与水合三氯化铱(IrCl3•H2O)反应,合成了一种新型三环喹喔啉铱配合物[Ir(DPQ)3],通过元素分析,1H NMR和质谱方法对配合物结构进行了表征,并初步研究了配合物的吸收光谱和荧光光谱。结果表明,配合物Ir(DPQ)3在387和458nm处存在单线态1MLCT(金属到配体的电荷跃迁)和三线态3MLCT的吸收;在634nm 处有较强的金属配合物三线态的磷光发射。  相似文献   

9.
联吡啶Ir(Ⅲ)配合物电子结构及光谱性质的理论研究   总被引:1,自引:0,他引:1  
采用密度泛函理论(DFT)对配合物Ir(ppy)2(N^N)+ [ppy=2-phenylpyrine, N^N=bpy= 2,2’-bipyridine(1); N^N=H2dcbpy=4.4’-dicarboxy-2,2’-bipyridine(2), N^N=Hcmbpy=4-carboxy-4’-methyl-2,2’-bipyridine(3)] 的基态和激发态几何构型进行优化, 通过TDDFT/B3LYP方法得到这些化合物在乙腈溶液中的吸收光谱和磷光发射光谱及其跃迁性质. 研究结果表明, 化合物1 (384 nm), 2(433 nm)和3 (413 nm) 最低的吸收谱被指认为MLCT/LLCT[dIr+π(ppy)→π*(N^N)]电荷跃迁. 化合物1(486 nm), 2(576 nm)和3 (567 nm)最低的磷光发射可以描述为[dIr+π(ppy)]→[π*(N^N)]跃迁. 这是由于联吡啶配体上吸电子基团的引入, 稳定了相应的空轨道, 导致了化合物2和3的吸收和发射光谱红移. 同时, 化合物非线性光学性质的计算结果表明, 三种化合物均具有较大的一阶超极化率(β), 联吡啶配体中吸电子基团的增加, 使得分子内电子转移增强, 导致一阶超极化率增大.  相似文献   

10.
魏新玉  王世民  魏东辉 《化学通报》2016,79(10):947-951
利用环金属配体2-(2’,4’-二氟苯基)-4-甲基吡啶(dfpmpy)和辅助配体5-(三氟甲基)-2-吡啶甲酸(tfmpic)合成了一个铱配合物[Ir(dfpmpy)2(tfmpic)],并测定了该配合物的光物理和电化学性质。在乙腈溶液中,配合物发射黄色磷光,其最大波长位于554 nm,理论计算表明其磷光来自于金属和环金属配体到辅助配体的电荷转移跃迁(3MLCT 或 3LLCT)。  相似文献   

11.
通过Ullmann反应和Negishi偶联反应, 合成了一种含三芳胺功能基的吡啶-2-甲酸衍生物; 并以此为辅助配体、1-苯基异喹啉为环金属配体, 设计合成了一种新型环金属铱配合物. 该配合物的二氯甲烷溶液, 在391~461 nm范围呈现了强烈的金属-配体电荷转移(MLCT)电子跃迁吸收带; 其最大发光波长为609 nm. 与传统的二(1-苯基异喹啉)(吡啶-2-甲酸)合铱配合物相比, 设计的环金属铱配合物具有增强的MLCT电子跃迁吸收和低的氧化电位, 是一种有发展潜力的红色磷光材料.  相似文献   

12.
采用密度泛函理论m PW1PW91方法研究了三氟甲基(CF3)基团修饰的一类Ir磷光材料,即Ir(C∧C)(ppy)2、Ir(C∧C)(ppy)(Ort CF3)、Ir(C∧C)(ppy)(Me CF3)和Ir(C∧C)(ppy)(Par CF3)[(C∧C:3-甲基-1-(2,4-甲基苯)-1H-咪唑;ppy:2-苯基吡啶,Ort CF3=2-(2-(三氟甲基)苯基)吡啶;Me CF3:2-(3-(三氟甲基)苯基)吡啶;Par CF3:2-(4-(三氟甲基)苯基)吡啶]的电子结构和光学性质.理论计算得到Ir(C∧C)(ppy)2的电子结构、吸收光谱和磷光光谱与实验结果吻合得较好.通过与实验分子Ir(C∧C)(ppy)2对比,向ppy的邻位和对位引入CF3基团加强金属和配体之间的作用力,提高空穴和电子注入能力,吸收和磷光发射光谱发生红移.尤其,Ir(C∧C)(ppy)-(Ort CF3)比其他配合物在发射磷光时金属到配体的电荷转移(3MLCT)的贡献大、跃迁偶极矩(μS1)大、d轨道能级分裂大,并且单三重态分裂能(ΔES1-T1)小,这表明设计的分子Ir(C∧C)(ppy)(Ort CF3)有望成为好的磷光发光材料.  相似文献   

13.
通过密度泛函和含时密度泛函方法对六元卟啉的钯金属配合物进行了系统的研究,探讨了几种金属配合物光学性质的变化.对于具有26π电子体系3个单金属配合物在Q带的最大吸收峰顺序为λmax(D26Pd)>λmax(R26Pd)>λmax(M28Pd),这同它们的ΔEH-L成反比.其中D26Pd和M28Pd的跃迁来自于π→π*的ILCT的跃迁,而R26Pd有部分金属d轨道参与到跃迁,跃迁性质为ILCT/MLCT.它们的B带的强吸收峰同自由状态下的配体的吸收光谱比较,配合物的吸收峰发生了约20nm左右的蓝移,吸收主要贡献都是来自于d(metal)→π*的MLCT的跃迁.非芳香性配合物M28Pd2α的跃迁性质则不同,无论是Q带还是B带都没有发现金属的参与,而且吸收强度明显降低.  相似文献   

14.
采用密度泛函理论以及B3LYP方法和单激发组态相互作用(CIS)方法分别优化了一系列[Os(II)(CO)3(tfa)(L)](tfa为三氟乙酸; L=O^O(1), O^N(2), N^N(3), 其中O^O为六氟乙酰丙酮, O^N为羟基喹啉, N^N为3-(三氟甲基)-5-(2-吡啶基)吡唑)配合物的基态和激发态结构. 利用含时密度泛函理论(TD-DFT)结合极化连续溶剂化模型(PCM)计算了配合物在CH2Cl2溶液中的吸收和发射光谱. 研究结果表明, 优化得到的几何结构参数和相应的实验值符合得非常好, 激发态几何构型相对基态变化较小, 这与实验上观察到的较小的斯托克斯频移现象一致. 配合物1-3的最低能吸收分别在342、431和329 nm, 其磷光发射分别在521、638 和488 nm. 配合物1-3的最高占据分子轨道和最低空轨道主要表现为L配体的π和π*轨道特征, 所以它们的最低能吸收归属于π-π*电荷跃迁, 并混有少量的金属到配体的电荷跃迁(MLCT)和配体之间电荷跃迁(LLCT)微扰, 且其高能吸收也表现为配体内部(IL)和配体间(LL)的电荷跃迁. 此外, 它们的磷光发射和吸收有相似的跃迁特征.  相似文献   

15.
合成了一种新型红色磷光配合物二(1-苯基咪唑) (1-苯基异喹啉)合铱((ppz)2Ir(piq)), 通过核磁共振氢谱(1H NMR)对其结构进行了表征, 通过紫外-可见(UV-Vis)吸收光谱、荧光光谱、低温磷光光谱、循环伏安法及含时密度泛函理论(TD-DFT)对其光物理性能及能级结构进行了研究. 制备了一系列基于(ppz)2Ir(piq)的电致发光器件, 研究了(ppz)2Ir(piq)的电致发光性质. 结果表明, (ppz)2Ir(piq)的UV-Vis 吸收峰主要位于296、342、395 和460 nm, 固态粉末的室温磷光发射峰位于618 nm, 在2-甲基四氢呋喃(2-MeTHF)溶液中其低温磷光发射峰位于598 nm, 其三线态能级(ET)为2.07 eV. (ppz)2Ir(piq)的最高占据轨道(HOMO), 其主要定域于配体ppz 和金属Ir(III)上, 最低未占据轨道(LUMO)主要定域于配体piq 上. (ppz)2Ir(piq)的HOMO和LUMO 能级分别为-5.92和-3.62 eV. 基于(ppz)2Ir(piq)电致发光器件的优化掺杂浓度为8%-12% (w), 最大电致发光谱峰位于616 nm,最大电流效率约10 cd·A-1, 最大功率效率为4.44 lm·W-1, 色坐标保持在(0.65, 0.35)附近, 是一种潜在的饱和红光磷光材料.  相似文献   

16.
合成了2个新的铱配合物[Ir(ppy)(qbiH)]NO_3(1·NO_3)和[Ir(ppy)(qbi)](2)。晶体结构分析表明,配合物1·NO_3和2中的[Ir(ppy)2]+单元分别与苯并咪唑基的中性配体qbiH与阴离子配体qbi-螯合。在溶液以及在固态条件下,2个配合物表现出明显不同的发光行为。1·NO_3和2在CH_2Cl_2溶液中的磷光发射波长分别为581和574 nm。在固态,1·NO_3和2分别发红色(616 nm)与桔色(598 nm)的磷光。有趣的是,1·NO_3和2在Et3N或TFA蒸汽的作用下,表现出红光发射与桔光发射之间的转换,这是因为它们的配体qbiH和qbi-发生了酸碱诱导的结构转换。此外,还讨论了配合物1·NO_3和2的结构与发光行为之间的关系。  相似文献   

17.
利用2-苯基吡啶及其衍生物为主配体、四苯基膦酰亚胺为辅助配体合成了3个铱配合物Ir(ppy)2tpip(Hppy:2-苯基吡啶,Htpip:四苯基膦酰亚胺)、Ir(npy)2tpip(Hnpy:2-(1-萘基)吡啶)和Ir(pnpy)2tpip(Hpnpy:2-(9-菲基)吡啶)。它们的结构通过1H NMR和MALDI-TOF质谱进行了表征,其中配合物Ir(ppy)2tpip还进一步通过晶体结构分析验证。主配体从苯环到萘环和菲环的改变增加了配合物的π共轭,减小了能级差,导致了3种配合物的磷光发射光谱从516 nm红移到600和633 nm(从绿光到红光),发光量子效率也从0.36增加到0.51和0.53。从量化计算的结果可以看出,这种共轭效应增加了主配体的电子密度,提高了配合物的LUMO能级。配合物结构和发射性质之间的关系规律为设计不同发光颜色的铱配合物提供了思路。  相似文献   

18.
以4-甲氧羰基-2-苯基喹啉为环金属配体,N^N辅助配体为解离配体合成了一系列离子型环金属铱配合物.配合物的结构通过质谱、核磁进行了表征.配合物1还测试了其单晶结构.对配合物的紫外、磷光性质进行了表征,溶液状态下为红光发射,波长在610~620 nm之间,磷光寿命在133~496 ns之间,量子效率在0.7%~16.6%之间.铱配合物的电化学发光与23Ru(bpy)+有所不同,发光电位比23Ru(bpy)+要高,且大部分铱配合物在正负电位都能发光,最大发光强度是23Ru(bpy)+的三倍.  相似文献   

19.
采用自旋限制和非限制B3LYP/UB3LYP方法分别优化了系列Os(Ⅱ)二亚胺配合物[Os(L)2(CN)2(phen)][phen=1,10-邻二氮杂菲;L=PH3(1),二甲基亚砜(DMSO)(2)]及[Os(PH3)2(phen)Br2](3)的基态和激发态几何构型.通过TD-DFT方法结合PCM溶剂化模型计算了配合物1~3在二氯甲烷溶液中的吸收和发射光谱并指认了相应的跃迁性质.通过理论化学计算,揭示了π酸配体及π碱配体对配合物磷光发射性质的影响及原因.并进一步解释了配合物3易于在Os-Br键处断裂而发生反应的量子化学机理.对配合物在不同溶剂中的磷光发射性质的计算表明,溶剂对配合物的量子产率存在着影响并且配合物具有溶剂化显色效应.  相似文献   

20.
利用2,3-二苯基喹喔啉和水合三氯化铱(IrCl3?H2O)反应, 合成了一种新型喹喔啉铱的配合物[Ir(DPQ)2(acac)], 通过元素分析, 1H NMR和HRMS对配合物结构进行了表征, 结果显示得到的是目标化合物. 利用紫外光谱和荧光光谱对配合物的吸收光谱和光致发光光谱进行了研究. 利用该材料作为磷光材料制备了结构为[ITO/NPB(30 nm)/NPB∶7% Ir(DPQ)2(acac)(25 nm)/PBD (10 nm)/Alq3 (30 nm)/Mg∶Ag (10∶1)(120 nm)/Ag(10 nm)] 的电致发光器件, 研究了其电致发光光谱. 结果表明, 配合物[Ir(DPQ)2(acac)]在476和625 nm处存在单重态1MLCT(金属到配体的电荷跃迁)和三重态3MLCT的吸收峰; 发光光谱结果显示, 在660 nm处有较强的金属配合物三重态的磷光发射; 电致发光光谱显示, 该器件的启动电压是4.25 V, 器件的最大亮度为4910 cd/m2, 外量子效率为5.14%, 器件的流明效率为1.12 lm/W, 是一种新型红色磷光材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号