首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation has been made on the adsorption and decomposition of formic acid on slightly oxidized Nb(110) surface (0/Nb atom ratio = 0.2) using high resolution electron energy loss spectroscopy (HREELS),and a corresponding surface reaction mode is given.At 140 K,formic acid of low exposure on such an Nb(110) surface decomposed to formate,which bonded on Nb in monodentate configuration,simultaneously some formate decomposed to CO,which adsorbed on the surface.Formic acid multilayers formed when the exposure was high.While the temperature was increased to above 190 K,multilayer formic acid desorbed,and the surface was covered with mon-odentate-bonded formate and CO.In the temperature range of 250-300 K,chemisorbed formate changed from monodentate configuration into bridging configuration and CO molecules disappeared.The decomposition of formate at higher temperatures led to the oxidation of Nb.The formate formed in the high exposure case was so stable that it did not decompose even the temperature wa  相似文献   

2.
Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H(12)COOH and H(13)COOH) reveals that formic acid is oxidized to CO(2) via adsorbed formate and the decomposition (oxidation) of formate to CO(2) is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account.  相似文献   

3.
Adsorption, diffusion, and dissociation of CO(2) on the anatase (101) surface were investigated using dispersion-corrected density functional theory. On the oxidized surface several different local minima were identified of which the most stable corresponds to a CO(2) molecule adsorbed at a five-fold coordinated Ti site in a tilted configuration. Surface diffusion is characterized by relatively small activation barriers. Preferential diffusion takes place along Ti rows and involves a cartwheel type of motion. The presence of a bridging oxygen defect or a surface interstitial Ti atom allows creation of several new strong binding configurations the most stable of which have bent CO(2) structures with simultaneous bonding to two surface Ti atoms. Subsurface oxygen vacancy or interstitial Ti defects are found to enhance the bonding of CO(2) molecules to the surface. CO(2) dissociation from these defect sites is calculated to be exothermic with barriers less than 21 kcal/mol. The use of such defects for catalytic activation of CO(2) on anatase (101) surface would require a mechanism for their regeneration.  相似文献   

4.
Reaction of the zinc or magnesium formate dihydrates in formic acid under solvothermal conditions results in the formation of single crystals of the anhydrous metal(II) formates β‐Zn(OOCH)2 and β‐Mg(OOCH)2. Both structures form one‐dimensional chains of μ‐oxygen‐bridged metal atoms. Single crystal diffraction studies reveal that β‐zinc formate represents the first structure in which chains of oxygen‐bridged metal atoms are connected by alternating single, double and triple oxygen atom bridges resulting in the first observation of corner, edge and face sharing coordination octahedra within a single chain. Polycrystalline material can be obtained by dehydration reaction of zinc formate dihydrate. β‐magnesium formate is the crystalline product that is obtained by annealing the amorphous intermediate phase after dehydration of magnesium formate dihydrate.  相似文献   

5.
A mechanistic study of electrocatalytic oxidation of formic acid on Pd in sulfuric and perchloric acids is reported. Surface-enhanced infrared absorption spectroscopy in the attenuated total reflection mode (ATR-SEIRAS) shows the adsorption of CO, bridge-bonded formate, bicarbonate, and supporting anions on the electrode surface. Poisoning of the Pd surface by CO, formed by dehydration of formic acid, is very slow and scarcely affects formic acid oxidation. The anions are adsorbed more strongly in the order of (bi)sulfate > bicarbonate > perchlorate, among which the most strongly adsorbed (bi)sulfate considerably suppresses formic acid oxidation in the double layer region. The oxidation is suppressed also at higher potentials in both acids by the oxidation of the Pd surface. Adsorbed formate is detected only when formic acid oxidation is suppressed. The results show that formate is a short-lived reactive intermediate in formic acid oxidation and is hence detected when its decomposition yielding CO(2) is suppressed. The high electrocatalytic activity of Pd can be ascribed to the high tolerance to CO contamination and also high catalytic activity toward formate decomposition.  相似文献   

6.
The catalytic properties of TiO2 (anatase) in the reactions of formaldehyde oxidation and formic acid decomposition are examined. At 100–150°C, formaldehyde is converted into methyl formate with high selectivity regardless of the presence of oxygen in the reaction mixture. Formic acid is decomposed to CO and water. Surface compounds formed in the reactions of formaldehyde, formic acid, and methyl formate with TiO2 (anatase) are identified by in situ FTIR spectroscopy. In a flow of a formaldehyde-containing mixture at 100°C, H-bonded HCHO, dioxymethylene species, bidentate formate, and coordinatively bonded HCHO are observed on the TiO2 surface. In the adsorption of formic acid, H-bonded HCOOH and two types of formates (bidentate and unsymmetrical formates) are formed. In the adsorption of methyl formate, H-bonded HCOOCH3, HCOOCH3 coordinatively bonded via the carbonyl oxygen, and bidentate formate are identified.  相似文献   

7.
The potential of in-situ Fourier transform infrared (FTIR) spectroscopy measurements in an attenuated total reflection configuration (ATR-FTIRS) for the evaluation of reaction pathways, elementary reaction steps, and their kinetics is demonstrated for formic acid electrooxidation on a Pt film electrode. Quantitative kinetic information on two elementary steps, formic acid dehydration and CO(ad) oxidation, and on the contributions of the related pathways in the dual path reaction mechanism are derived from IR spectroscopic signals in simultaneous electrochemical and ATR-FTIRS measurements over a wide temperature range (25-80 degrees C). Linearly and multiply bonded CO(ad) and bridge-bonded formate are the only formic acid related stable reaction intermediates detected. With increasing temperature, the steady-state IR signal of CO(ad) increases, while that of formate decreases. Reaction rates for CO(ad) formation via formic acid dehydration and for CO(ad) oxidation as well as the activation energies of these processes were determined at different temperatures, potentials, and surface conditions (with and without preadsorbed CO from formic acid dehydration) from the temporal evolution of the IR intensities of CO(ad) during adsorption/reaction transients, using an IR intensity-CO(ad) coverage calibration. At potentials up to 0.75 V and temperatures from 25 to 80 degrees C, the "indirect" CO pathway contributes less than 5% (at potentials < or =0.6 V significantly below 1%) to the total Faradaic reaction current, making the "direct" pathway by far the dominant one under the present reaction conditions. Much higher activation energies for CO(ad) formation and CO(ad) oxidation compared with the effective activation energy of the total reaction, derived from the Faradaic currents, support this conclusion.  相似文献   

8.
We present density functional theory calculations and first-principles molecular dynamics simulations of formic acid adsorption on anatase TiO(2)(001), the minority surface exposed by anatase TiO(2) nanoparticles. A wide range of factors that may affect formic acid adsorption, such as coverage, surface hydration, and reconstruction, are considered. It is found that (i) formic acid dissociates spontaneously on unreconstructed clean TiO(2)(001)-1 x 1, as well as on the highly reactive ridge of the reconstructed TiO(2)(001)-1 x 4 surface; (ii) on both the 1 x 1 and 1 x 4 surfaces, various configurations of dissociated formic acid exist with adsorption energies of about 1.5 eV, which very weakly depend on the coverage; (iii) bidentate adsorption configurations, in which the formate moiety binds to the surface through two Ti-O bonds, are energetically more favored than monodentate ones; (iv) partial hydration of TiO(2)(001)-1 x 1 tends to favor the bidentate chelating configuration with respect to the bridging one but has otherwise little effect on the adsorption energetics; and (v) physical adsorption of formic acid on fully hydrated TiO(2)(001)-1 x 1 is also fairly strong. Comparison of the present results for formic acid adsorption with those for water and methanol under similar conditions provides valuable insights to the understanding of recent experimental results concerning the coadsorption of these molecules.  相似文献   

9.
蒋宗轩  李灿  辛勤 《催化学报》1993,14(3):185-190
利用FT-IR原位考察了稀土氧化镨上CO和表面羟基的反应。在473K以下,未检测到CO和氧化镨表面反应的吸附物种;在CO气氛中,升温到473K,观察到甲酸根吸附物种的红外特征峰1578,1371和1367cm~(-1)。用同位素D_2部分还原的氧化镨吸附CO以及甲酸吸附证实了CO与氧化镨表面的羟基反应可生成表面甲酸根吸附物种。讨论了CO在氧化镨表面的反应机理及甲酸根的氧化过程。  相似文献   

10.
Adsorption of CO(2) on the rutile(110) surface was investigated using dispersion-corrected density functional theory and scanning tunneling microscopy (STM). On the oxidized surface the CO(2) molecules are found to bind most strongly at the five-fold coordinated Ti sites adopting tilted or flat configurations. The presence of bridging oxygen defects introduces two new adsorption structures, the most stable of which involves CO(2) molecules bound in tilted configurations at the defect sites. Inclusion of dispersion corrections in the density functional theory calculations leads to large increases in the calculated adsorption energies bringing these quantities into good agreement with experimental data. The STM measurements confirm two of the calculated adsorption configurations.  相似文献   

11.
Oxygen vacancy (Vo) on transition metal oxides plays a crucial role in determining their chemical/physical properties. Conversely, the capability to directly detect the changing process of oxygen vacancies (Vos) will be important to realize their full potentials in the related fields. Herein, with a novel synchronous illumination X‐ray photoelectron spectroscopy (SI‐XPS) technique, we found that the surface Vos (surf‐Vos) exhibit a strong selectivity for binding with the water molecules, and sequentially capture an oxygen atom to achieve the anisotropic self‐healing of surface lattice oxygen. After this self‐healing process, the survived subsurface Vos (sub‐Vos) promote the charge excitation from Ti to O atoms due to the enriched electron located on low‐coordinated Ti sites. However, the excessive sub‐Vos would block the charge separation and transfer to TiO2 surfaces resulted from the destroyed atomic structures. These findings open a new pathway to explore the dynamic changes of Vos and their roles on catalytic properties, not only in metal oxides, but in crystalline materials more generally.  相似文献   

12.
Our density functional theory study of hydroperoxy (OOH) intermediates on various model titanosilicalite (TS-1) Ti centers explores how microstructural aspects of Ti sites effect propylene epoxidation reactivity and shows that Ti sites located adjacent to Si vacancies in the TS-1 lattice are more reactive than fully coordinated Ti sites, which we find do not react at all. We show that propylene epoxidation near a Si-vacancy occurs through a sequential pathway where H(2)O(2) first forms a hydroperoxy intermediate Ti-OOH (15.4 kcal/mol activation energy) and then reacts with propylene by proximal oxygen abstraction (9.3 kcal/mol activation energy). The abstraction step is greatly facilitated through a simultaneous hydride transfer involving neighboring terminal silanol groups arising from the Si vacancy. The transition state for this step exhibits 6-fold oxygen coordination on Ti, and we conclude that the less constrained environment of Ti adjacent to a vacancy accounts for greater transition state stability by allowing relaxation to a more octahedral geometry. These results also show that the reactive hydroperoxy intermediates are generally characterized by smaller electron populations on the proximal oxygen atom compared to nonreactive intermediates and greater O-O polarization--providing a potential means of computationally screening novel titanosilicate structures for epoxidation reactivity.  相似文献   

13.
We present the measurements for the diffusion of bridging oxygen vacancy (OV) crossover Ti rows via OV pairs (OVPs). Using a high-resolution scanning tunneling microscope (STM), we show that the OVs can be moved along the bridging oxygen rows driven by the STM tip at voltages higher than 3.0 V on TiO(2)(110)-(1x1) surface. It is found that the combination of OVPs leads to the formation of OVPs, which can diffuse crossover Ti rows under the mediation of OVs in adjacent bridging oxygen rows. The deduced diffusion activation energy for the diffusive OVPs from experiments is in agreement with first-principles calculations. The reaction activation energy of the OVPs with O(2) is lower than that of the OVs by 82 meV.  相似文献   

14.
Oxygen vacancy (Ov) has significant influence on physical and chemical properties of TiO2 systems,especially on surface catalytic processes.In this work,we investigate the effects of O v on the adsorption of formaldehyde (HCHO) on TiO2(110) surfaces through firstprinciples calculations.With the existence of Ov,we find the spatial distribution of surface excess charge can change the relative stability of various adsorption configurations.In this case,the bidentate adsorption at five-coordinated Ti (Ti5c) can be less stable than the monodentate adsorption.And HCHO adsorbed in Ov becomes the most stable structure.These results are in good agreement with experimental observations,which reconcile the long-standing deviation between the theoretical prediction and experimental results.This work brings insights into how the excess charge affects the molecule adsorption on metal oxide surface.  相似文献   

15.
Density function theory study of CO adsorption on Fe3O4(111) surface   总被引:1,自引:0,他引:1  
Density functional theory calculations have been carried out for CO adsorption on the Fe(oct2)- and Fe(tet1)-terminated Fe(3)O(4)(111) surfaces, which are considered as active catalysts in water-gas shift reaction. It is found that the on-top configurations are most stable on these two surfaces. Some bridge configurations are also stable in which the new C-O bond formed between the surface O atom and the C atom of CO. The adsorption on the Fe(oct2)-terminated surface is more stable than on the Fe(tet1)-terminated surface. The density of state reveals the binding mechanism of CO adsorption on the two surfaces. Our calculations have also shown that the absorbed CO can migrate from the on-top site to the bridge site or 3-fold site. The oxidation of CO via surface oxygen atoms is feasible, which is in good agreement with experimental results.  相似文献   

16.
We explored water-assisted decompositions of formic acid in supercritical water in terms of local structure near reactant. A hybrid quantum mechanics/molecular mechanics (QM/MM) simulation used in this paper includes QM part as first solvation shell members around the reactant. A present QM/MM approach can simulate supercritical water solution with a reasonable computational load while keeping the simulation preciseness because a density functional theory of B3LYP/6-31+G(d) level was iterated at every 1000 Monte Carlo solute moves. The formic acid converts mainly decarboxylation by water-assisted mechanism, and the coordinated water molecules play an important role for understanding supercritical water density dependence of the reaction. We analyzed a contour map based on the solute–solvent interaction energy along with the reaction pathway. Coordinated water molecule restricted the dehydration pathway by means of hydrogen bond with formic acid, however, the coordinated water promotes the decarboxylation pathway by means of stabilization of the transition state structure with one catalytic water molecule. The contour map of the pair interaction energy along the reaction path elucidates the role of local structure on reactions in supercritical water.  相似文献   

17.
We have modeled temporal potential oscillations during the electrooxidation of formic acid on platinum on the basis of the experimental results obtained by time-resolved surface-enhanced infrared absorption spectroscopy (J. Phys. Chem. B 2005, 109, 23509). The model was constructed within the framework of the so-called dual-path mechanism; a direct path via a reactive intermediate and an indirect path via strongly bonded CO formed by dehydration of formic acid. The model differs from earlier ones in the intermediate in the direct path. The reactive intermediate in this model is formate, and the oxidation of formate to CO2 is rate-determining. The reaction rate of the latter process is represented by a second-order rate equation. Simulations using this model well reproduce the experimentally observed oscillation patterns and the temporal changes in the coverages of the adsorbed formate and CO. Most properties of the voltammetric behavior of formic acid, including the potential dependence of adsorbate coverages and a negative differential resistance, are also reproduced.  相似文献   

18.
Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.  相似文献   

19.
Different copper formate complexes formed on the surface of metallic copper have been studied by Raman spectroscopy. Their Raman spectra have been correlated with the dehydrated copper formate, the copper formate dihydrate and the copper formate tetrahydrate. Experiments with deuterated formic acid reveal the influence of water molecules coordinated to the copper ion on the position of Raman bands of the formate ion.  相似文献   

20.
The interaction of formaldehyde with a highly selective V-Ti-O catalyst for the oxidation of formaldehyde to formic acid is studied by Fourier-transform infrared (FTIR) spectroscopy at 70–200‡C. In a flow of formaldehyde/oxygen mixture and in a mixture without oxygen at optimal temperatures for formic acid formation (100–140‡C), methoxy groups and other oxygenates are formed in small amounts. These are two bidentate formates and covalently bound monodentate formate. The fact that similar oxygenates are observed independently of the presence of oxygen in the reaction mixture suggests the participation of the catalyst oxygen in their formation. Oxygen accelerates the desorption of bidentate formates. Bidentate formates of one type decompose in a flow of air at 100–150‡C, and bidentate formates of the other type decompose at 170–200‡C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号