首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, we report pH-responsive metal-based biopolymer nanoparticles (NPs) for tumor-specific chemotherapy. Here, aminated hyaluronic acid (aHA) coupled with 2,3-dimethylmaleic anhydride (DMA, as a pH-responsive moiety) (aHA-DMA) was electrostatically complexed with ferrous chloride tetrahydrate (FeCl2/4H2O, as a chelating metal) and doxorubicin (DOX, as an antitumor drug model), producing DOX-loaded Fe-based hyaluronate nanoparticles (DOX@aHA-DMA/Fe NPs). Importantly, the DOX@aHA-DMA/Fe NPs improved tumor cellular uptake due to HA-mediated endocytosis for tumor cells overexpressing CD44 receptors. As a result, the average fluorescent DOX intensity observed in MDA-MB-231 cells (with CD44 receptors) was ~7.9 × 102 (DOX@HA/Fe NPs, without DMA), ~8.1 × 102 (DOX@aHA-DMA0.36/Fe NPs), and ~9.3 × 102 (DOX@aHA-DMA0.60/Fe NPs). Furthermore, the DOX@aHA-DMA/Fe NPs were destabilized due to ionic repulsion between Fe2+ and DMA-detached aHA (i.e., positively charged free aHA) in the acidic environment of tumor cells. This event accelerated the release of DOX from the destabilized NPs. Our results suggest that these NPs can be promising tumor-targeting drug carriers responding to acidic endosomal pH.  相似文献   

2.
This work reported a one-step encapsulation of indocyanine green (ICG) in ZIF-8 nanoparticles (NPs), which possess an absorption band in the near infrared region and have the good photothermal conversion efficiency. The in vivo and in vitro studies show that, after loading DOX, ICG@ZIF-8-DOX NPs exhibit the chem-band photothermal synergistic therapy for tumor.  相似文献   

3.
We have rationally designed a new theranostic agent by coating near‐infrared (NIR) light‐absorbing polypyrrole (PPY) with poly(acrylic acid) (PAA), in which PAA acts as a nanoreactor and template, followed by growing small fluorescent silica nanoparticles (fSiO2 NPs) inside the PAA networks, resulting in the formation of polypyrrole@polyacrylic acid/fluorescent mesoporous silica (PPY@PAA/fmSiO2) core–shell NPs. Meanwhile, DOX‐loaded PPY@PAA/fmSiO2 NPs as pH and NIR dual‐sensitive drug delivery vehicles were employed for fluorescence imaging and chemo‐photothermal synergetic therapy in vitro and in vivo. The results demonstrate that the PPY@PAA/fmSiO2 NPs show high in vivo tumor uptake by the enhanced permeability and retention (EPR) effect after intravenous injection as revealed by in vivo fluorescence imaging, which is very helpful for visualizing the location of the tumor. Moreover, the obtained NPs inhibit tumor growth (95.6 % of tumors were eliminated) because of the combination of chemo‐photothermal therapy, which offers a synergistically improved therapeutic outcome compared with the use of either therapy alone. Therefore, the present study provides new insights into developing NIR and pH‐stimuli responsive PPY‐based multifunctional platform for cancer theranostics.  相似文献   

4.
A supramolecular nanovehicle (denoted as SNV) was fabricated by encapsulating zinc phthalocyanine (ZnPc) and doxorubicin (DOX) into a copolymer (PVP-b-PAA-g-FA), so as to achieve systematic and synergistic chemotherapy-photodynamic therapy (PDT), targeted tumor imaging and therapy. The sophisticated copolymer designed in this work can load the PDT photosensitizer (ZnPc) and chemotherapy drug (DOX) simultaneously, which exhibits an excellent performance in chemotherapy-PDT targeted cancer and tumor therapy for both in vitro studies performed with HepG2 cells and in vivo tests with mice. This work provides a new drug formulation with a chemotherapy-PDT synergistic effect by virtue of the supramolecular material design, which possesses the advantages of an ultra-low drug dosage and highly-efficient in vivo targeted tumor imaging/therapy.  相似文献   

5.
袁直 《高分子科学》2014,32(5):540-550
A series of drug delivery systems based on a sodium alginate derivative were prepared by mixing glycyrrhetinic acid(GA) and doxorubicin(DOX) conjugates at different ratios. GA(a liver-targeting ligand) and DOX(an antitumor drug) were both conjugated to oligomeric glycol monomethyl ether-modified sodium alginate(ALG-mOEG) for prolonged duration of action. These NP-based delivery systems exhibited active cell uptake and cytotoxicity in vitro and liver-targeted distribution and anti-tumor activity in vivo. In addition, nanoparticles with a 1:1(W:W) ratio of GA-ALG-mOEG and DOXALG-mOEG(NPs-3) showed the highest cellular uptake and cytotoxicity in vitro and liver-targeted distribution and antitumor activity in vivo. Specifically, when mixed nanoparticles defined as NPs-3 were injected in mice, liver DOX concentration reached 61.9 μg/g 3 h after injection, and AUC0-∞ and t1/2 of DOX in liver reached 4744.9 μg·h/g and 49.5 h, respectively. In addition, mice receiving a single injection of NPs-3 exhibited much slower tumor growth(88.37% reduction in tumor weight) 16 days after injection compared with placebo. These results indicate that effective cancer treatment may be developed using mixed NP delivery systems with appropriate ratio of targeted ligand and drug.  相似文献   

6.
《中国化学快报》2023,34(4):107720
The clinical efficacy of chemotherapeutic drugs is hindered by their poor aqueous solubility, low bioavailability and severe side effects. In recent years, polymeric nanocarriers have been used for drug delivery to improve the efficacy of many chemotherapeutics. In this study, a series of biodegradable phenylalanine-based poly(ester amide) (Phe-PEA) with tunable molecular weights (MWs) were synthesized to systematically investigate the relationship between the polymer MW and the efficacy of the corresponding polymeric nanoparticles (NPs). The results indicated that a range of polymers with different MWs can be obtained by varying the monomer ratio or reaction time. Doxorubicin (DOX), a classic clinical lymphoma treatment strategy, was selected as a model drug. The loading capacity and stability of the higher MW polymeric NPs were superior to those of the lower MW ones. Moreover, in vitro and in vivo data revealed that high MW polymeric NPs had better anticancer efficacy against lymphoma and higher biosafety than low MW polymeric nanoparticles and DOX. Therefore, this study suggests the importance of polymer MW for drug delivery systems and provides valuable guidance for the design of enhanced polymeric drug carriers for lymphoma treatment.  相似文献   

7.
The systemic toxicity of anticancer drugs regularly restricts the use of conventional chemotherapy to treat cancer. In this study, the limitations overcome by profitably fabricating a multifunctional nanocarrier system to carry the anticancer drug into the specific location of the cancer cells. The polyethylene glycol (PEG) was functionalized in the carboxylated multiwalled carbon nanotubes (MWCNT-COOH) through an esterification reaction (MWCNT-PEG). The targeting ligand of folic acid (FA) was covalently bonded with hyperbranched poly-L-lysine (HBPLL) using adipic acid (AA) as a cross-linking agent. Doxorubicin (DOX), an anticancer drug, was effectively loaded on MWCNT-PEG-AA-HBPLL-FA carrier loading, and in-vitro drug release was investigated by UV–Vis spectrophotometer. The chemical functionalization, morphological properties, crystalline nature, surface charge, and thermal stability of the synthesized materials were studied by FT-IR, FE-SEM, HR-TEM, DLS, and TGA techniques. In-vitro cytotoxicity and anticancer properties of DOX-loaded nanocarrier were studied in human liver cancer (HepG2) cells and human embryonic kidney (HEK293) cells. The activities of caspases (caspase ?3, ?8 & ?9) were analyzed using luminometry. The intrinsic apoptosis pathway proteins (Bcl-2 & BAX) were determined by western blot and RT-PCR analysis. The synthesized DOX-loaded nanocarriers exhibited increased cytotoxicity and apoptosis in liver HepG2 cells. The results suggest that the DOX-loaded nanocarrier possesses strong anticancer properties and could be an applicable and potential drug carrier for liver cancer chemotherapy.  相似文献   

8.
The authors describe new bifunctional mesoporous silica nanoparticles (NPs) for specific targeting of tumor cells and for intracellular delivery of the cancer drug doxorubicin (DOX). Mesoporous silica nanoparticles (MSNPs) were coated with blue fluorescent N-graphene quantum dots, loaded with the drug DOX, and finally coated with hyaluronic acid (HA). Cellular uptake of the NPs with an architecture of the type HA-DOX-GQD@MSNPs enabled imaging of human cervical carcinoma (HeLa) cells via fluorescence microscopy. The cytotoxicity of the nanoparticles on HeLa cells was also assessed. The results suggest that the NPs are higher cytotoxicity effect and exert in living cell imaging ability. Compared to the majority of other drug nanocarrier systems, the one described here enables simultaneous DOX release and fluorescent monitoring.
Graphical abstract Schematic of the bifunctional mesoporous silica nanoparticles were obtained via the Stöber method, along with the doxorubicin loaded and the hyaluronic acid capped. The sensor shows good specificity and significant cytotoxicity effect on Hela cells. (TEOS: tetraethyl orthosilicate; GQDs: graphene quantum dots; DOX: doxorubicin; HA: Hyaluronic acid).
  相似文献   

9.
《中国化学快报》2023,34(6):107949
The application of fluorescent probes for in vivo retinal imaging is of great importance, which could provide direct and crucial imaging evidence for a better understanding of common eye diseases. Herein, a group of bright organic luminogens with typical electron-donating (D) and electron-accepting (A) structures (abbreviated as LDs-BDM, LDs-BTM, and LDs-BHM) was synthesized through a simple single-step reaction. They were found to be efficient solid-state emitters with high fluorescence quantum yields of above 70% (e.g., 83.7% for LDs-BTM). Their light-emission properties could be tuned by the modulation of π-conjugation effect with methoxy groups at different substituent positions. Their resulting fluorescent nanoparticles (NPs) were demonstrated as specific lipid droplets (LDs) targeting probes with high brightness, good biocompatibility, and satisfactory photostability. LDs-BTM NPs with a large two-photon absorption cross section (σ2 = 249 GM) were further utilized as ultrabright two-photon fluorescence (2PF) nanoprobes for in vivo retina imaging of live zebrafish by NIR excitation at an ultralow concentration (0.5 µmol/L). Integrated histological structures at the tissue level and corresponding fine details at the cellular level of the embryonic retina of live zebrafish were clearly demonstrated. This is the first report of using ultrabright LDs-targeting nanoprobes to accurately measure fine details in the retina with 2PF microscopic technique. These good results are anticipated to open up a new avenue in the development of efficient 2PF emitters for non-invasive bioimaging of living animals.  相似文献   

10.
In this study, we reported pH-responsive microparticles consisting of poly(D,L-lactide-co-glycolide) (PLGA), aminated hyaluronic acid (aHA) conjugated with 2,3-dimethylmaleic anhydride (DMA, as a pH-responsive cleavable molecule) (aHA-DMA), and doxorubicin (DOX, as an antitumor drug) for local tumor treatment. The DOX-loaded microparticles, denoted as PLGA(aHA-DMA)/DOX MPs, were fabricated using the W1/O/W2 multi-emulsification method. These PLGA(aHA-DMA)/DOX MPs (~10 μm in diameter) accelerated the rate of DOX release at pH 6.8 due to the acidic pH-responsive cleavage of the DMA moieties followed by electrostatic-repulsion between aHA and DOX. This event caused the structural destabilization and collapse of the MPs, leading to the rapid release of DOX. Consequently, the PLGA(aHA-DMA)/DOX MPs resulted in significant inhibition of tumor growth, demonstrating their ability for acidic tumor-specific treatment.  相似文献   

11.
Sparing sensitive healthy tissue from chemotherapy exposure is a critical challenge in the treatment of cancer. The work described here demonstrates the localized in vivo photoactivation of a new chemotherapy prodrug of doxorubicin (DOX). The DOX prodrug (DOX‐PCB) was 200 times less toxic than DOX and was designed to release pure DOX when exposed to 365 nm light. This wavelength was chosen because it had good tissue penetration through a 1 cm diameter tumor, but had very low skin penetration, due to melanin absorption, preventing uncontrolled activation from outside sources. The light was delivered specifically to the tumor tissue using a specialized fiber‐optic LED system. Pharmacokinetic studies showed that DOX‐PCB had an α circulation half‐life of 10 min which was comparable to that of DOX at 20 min. DOX‐PCB demonstrated resistance to metabolic cleavage ensuring that exposure to 365 nm light was the main mode of in vivo activation. Tissue extractions from tumors exposed to 365 nm light in vivo showed the presence of DOX‐PCB as well as activated DOX. The exposed tumors had six times more DOX concentration than nearby unexposed control tumors. This in vivo proof of concept demonstrates the first preferential activation of a photocleavable prodrug in deep tumor tissue.  相似文献   

12.
Prostate cancer(PCa) is the second most commonly diagnosed cancer in men. The Rac1-GTP inhibitor NSC23766 has been shown to suppress PCa growth. However, these therapies have low tumor-targeting efficacy in vivo. Therefore, it is essential to produce a drug delivery system that specifically targets the tumor site. Herein, novel L-phenylalanine-based poly(ester amide)(Phe-PEA) polymers were synthesized and loaded with NSC23766(NSC23766@8P6 NPs), which had a small particle size(162.3 ± 6.7 nm) and...  相似文献   

13.
The antitumor activities of DOX‐loaded alginic acid/poly[2‐(diethylamino)ethyl methacrylate] (ALG‐PDEA) nanoparticles are evaluated both in vitro and in vivo. TEM imaging shows that the ALG‐PDEA NPs have a spherical morphology with a size of about 120 nm. CLSM observations reveal that the negatively charged ALG‐PDEA NPs can be taken up well by cells. In vivo NIR fluorescence imaging shows that the ALG‐PDEA NPs can passively target the tumor area because of the EPR effect in the H22 tumor‐bearing mouse. In vivo antitumor efficacy examinations indicate that DOX‐loaded ALG‐PDEA NPs have significantly superior efficacy in impeding tumor growth compared to free DOX and low toxicity to living mice.

  相似文献   


14.
In pancreatic cancer, the special barrier system formed by a large number of stromal cells severely hinders drug penetration in deep tumor tissues, resulting in low treatment efficiency. Cell membrane protein-camouflaged liposomal nanomedicines have cancer cell targeting abilities, whereas near-infrared two-zone (NIR-II) fluorescence imaging can achieve deep tissue penetration due to its long light wavelength (1,000–1,700 nm). To combine the cell membrane-based biomimetic technology with NIR-II fluorescence imaging, we constructed a biomimetic nanomedicine (BLIPO-I/D) by camouflaging indocyanine green-doxorubicin (ICG-DOX) liposomes with SW1990 pancreatic cancer cell membrane. The nanomedicine exhibited light-controlled DOX release and high pancreatic cancer treatment efficiency in vitro and in vivo. BLIPO-I/D showed the ability of targeted delivery of a large number of liposomes to pancreatic tumor tissues through homologous targeting of SW1990 cell membranes, which increased the NIR-II fluorescence imaging intensity. Irradiation of the liposomes taken up by pancreatic tumor tissues with near-infrared light (808 nm) triggered the rapid release of DOX from the liposomes, induced the photothermal and photodynamic effects of ICG, which exerted anti-tumor effects. Therefore, the fabricated biomimetic liposomal nanomedicine BLIPO-I/D is expected to achieve precise theranostics of pancreatic cancer.  相似文献   

15.
A novel type of bioreducible amphiphilic multiarm hyperbranched copolymer (H40-star-PLA-SS-PEG) based on Boltorn® H40 core, poly(l-lactide) (PLA) inner-shell, and poly(ethylene glycol) (PEG) outer-shell with disulfide-linkages between the hydrophobic and hydrophilic moieties was developed as unimolecular micelles for controlled drug release triggered by reduction. The obtained H40-star-PLA-SS-PEG was characterized in detail by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), gel permeation chromatography (GPC), differential scanning calorimeter (DSC), and thermal gravimetric analysis (TGA). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses suggested that H40-star-PLA-SS-PEG formed stable unimolecular micelles in aqueous solution with an average diameter of 19 nm. Interestingly, these micelles aggregated into large particles rapidly in response to 10 mM dithiothreitol (DTT), most likely due to shedding of the hydrophilic PEG outer-shell through reductive cleavage of the disulfide bonds. As a hydrophobic anticancer model drug, doxorubicin (DOX) was encapsulated into these reductive unimolecular micelles. In vitro release studies revealed that under the reduction-stimulus, the detachment of PEG outer-shell in DOX-loaded micelles resulted in a rapid drug release. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells. Methyl tetrazolium (MTT) assay demonstrated a markedly enhanced drug efficacy of DOX-loaded H40-star-PLA-SS-PEG micelles as compared to free DOX. All of these results show that these bioreducible unimolecular micelles are promising carriers for the triggered intracellular delivery of hydrophobic anticancer drugs.  相似文献   

16.
《中国化学快报》2020,31(6):1382-1386
Fluorescence imaging in the second near-infrared window(NIR-Ⅱ,1000-1700 nm) is a promising modality for real-time imaging of cancer and image-guided surgery with superior in vivo optical properties.So far,very few NIR-Ⅱ fluorophores have been reported for in vivo biomedical imaging of chemically-induced spontaneous breast carcinoma.Herein,a NIR-Ⅱ fluorescent probe CH1055-F3 with the nucleolin-targeted tumor-homing peptide F3 was demonstrated to prefe rentially accumulate in 4 T1 tumors.More importantly,CH1055-F3 exhibited specific NIR-Ⅱ signals with high spatial and temporal resolution,strong tumor uptake,and remarkable NIR-Ⅱ image-guided surgery in dimethylbenzanthracene(DMBA)-induced spontaneous breast tumor rats.This report presents the first tumor-homing peptide-based NIR-Ⅱ probe to diagnose transplantable and spontaneous breast tumors by the active targeting.  相似文献   

17.
Herein, new poly(ortho ester disulfide urethanes) (POEDU) and poly(ortho ester urethanes) (POEU) were successfully synthesized via polycondensation between active esters of 1,6-hexandiol (HD) and dual-stimuli-sensitive ortho ester disulfide diamine or pH-senstive ortho ester diamine. The corresponding POEDU and POEU nanospheres were easily fabricated using an oil-in-water emulsion technique. In vitro degradation experiments indicated that POEDU nanospheres degraded faster than POEU nanospheres in mildly acidic and reductive environments. Doxorubicin (DOX) as a model antitumor drug was successfully incorporated into these nanospheres to give DOX-loaded nanoparticles (POEDU-DOX and POEU-DOX). In vitro drug release studies showed that release of DOX from dual-stimuli-sensitive POEDU-DOX was accelerated compared with release from the pH-sensitive POEU-DOX under DL-dithiothreitol (DTT) and mildly acidic conditions. In addition, in vitro uptake and cytotoxicity assays revealed that POEDU-DOX exhibited more efficient antitumor effect than POEU-DOX did against both two-dimensional (2D) cells and three-dimensional (3D) multicellular tumor spheroids (MCTS). Finally, in a mice H22 tumor model, POEDU-DOX exhibited preferable antitumor capability. In conclusion, the pH and redox dual-stimuli-sensitive POEDU nanospheres can be superior drug carriers for cancer treatment.  相似文献   

18.
《Mendeleev Communications》2023,33(3):340-342
Internalization of poloxamer 188-coated PLGA nanoparticles (NPs) in GL261 murine glioma cells was studied using confocal laser scanning microscopy. For visualization, both poloxamer 188 (P188) and PLGA were labeled covalently with fluorescent dyes Rhodamine B and Cyanine5, respectively. The results indicated that the PLGA NPs coated with poloxamer 188 enter a cell as an integral core–shell structure, which can be helpful for gaining further insight into the in vivo performance of surfactant-coated polymeric NPs as core–shell delivery systems  相似文献   

19.
《中国化学快报》2023,34(10):108239
Carbon dots (CDs), a new building unit, have been revolutionizing the fields of biomedicine, bioimaging, and optoelectronics with their excellent physical, chemical, and biological properties. However, the difficulty of preparing excitation-dependent full-spectrum fluorescent CDs has seriously hindered their further research in fluorescence emission mechanisms and biomedicine. Here, we report full-spectrum fluorescent CDs that exhibit controlled emission changes from purple (380 nm) to red (613 nm) at room temperature by changing the excitation wavelength, and the excitation dependence was closely related to the regulation of sp2 and sp3 hybrid carbon structures by β-cyclodextrin-related groups. In addition, by regulating the content of β-cyclodextrin, the optimal quantum yields of full-spectrum fluorescent CDs were 8.97%, 8.35%, 7.90%, 9.69% and 17.4% at the excitation wavelengths of 340, 350, 390, 410 and 540 nm, respectively. Due to their excellent biocompatibility and color tunability, full-spectrum fluorescent CDs emitted bright and steady purple, blue, green, yellow, and red fluorescence in MCF-7 cells. Moreover, we optimized the imaging conditions of CDs and mitochondrial-specific dyes; and realized the mitochondrial-targeted co-localization imaging of purple, blue and green fluorescence. After that, we also explored the effect of full-spectrum fluorescent CDs in vivo fluorescence imaging through the intratumorally, subcutaneously, and caudal vein, and found that full-spectrum fluorescent CDs had good fluorescence imaging ability in vivo.  相似文献   

20.
The efficiency of antitumor immunotherapy is usually limited by the immunosuppressive tumor microenvironment (TME). In this study, we developed a chemo-immunotherapy strategy that is able to improve the immunosuppressive TME for enhancing the antitumor efficacy. The chemo-immunotherapy was achieved by the topical co-delivery of a chemotherapeutic drug, Doxorubicin (DOX), an immune checkpoint blocking antibody targeting programmed cell death protein 1 (aPD-1), and an indoleamine-2,3-dioxygenase (IDO) inhibitor, 1-methyl-d -tryptophan (d -1MT) by using a thermosensitive polypeptide hydrogel. It was revealed that the sustained DOX release from the hydrogel caused the immunogenic cell death (ICD) of B16F10 cells in vitro, and the tumor cell lysates subsequently promoted the activation of dendritic cells (DCs). After intratumoral injection into B16F10 melanoma-bearing mice, the DOX/aPD-1/D-1MT co-loaded hydrogel exhibited enhanced tumor inhibition efficacy and prolonged animal survival time, compared to the DOX/aPD-1/D-1MT mixed solution, DOX-loaded hydrogel or DOX/aPD-1 co-loaded hydrogel. The improvement of immunosuppressive TME and enhancement of antitumor immune response after the local chemo-immunotherapy were demonstrated by the augmented activation of DCs and increased infiltration of CD8+ and CD4+ T cells, as well as enhanced secretion of pro-inflammatory cytokines. Therefore, the hydrogel-based local chemo-immunotherapy system holds great potential for effective antitumor treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号