首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of adhesion at semicrystalline polymer interfaces between isotactic polypropylene (iPP) and linear low‐density polyethylene (PE) was studied with transmission electron microscopy (TEM) and an asymmetric‐double‐cantilever‐beam test. From the TEM images, both the interfacial width and the lamellar thickness of the polymers were extracted. During annealing, the interfacial width increased with the annealing temperature, and this indicated the accumulation of amorphous polymers at the interface. The interfacial strength, determined from the critical fracture energy (Gc), also increased with the annealing temperature and reached a maximum above the melting temperatures of iPP and PE, whereas the smallest Gc value was obtained below the melting temperatures of the two materials. A mechanism of interfacial strengthening was proposed accounting for the competition between the interdiffusion of PE and crystallization of iPP. As the annealing temperature increased, the rates of PE diffusion and iPP crystallization increased. Although the crystallization of iPP hindered the interdiffusion of PE, both the interfacial width and the fracture energy increased with the temperature, and this indicated that PE interdiffusion dominated iPP crystallization. Below the critical temperature, the fracture surfaces of both iPP and PE were smooth, and chain pullout dominated the fracture mechanism. Above the critical temperature, iPP crystallization still hindered the interdiffusion, and crazes could be seen on the iPP side. Above the melting temperatures of the two materials, ruptured surfaces could also be seen on the PE side, and crazing was the fracture mechanism. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2667–2679, 2004  相似文献   

2.
3.
This paper examines the role of polymer interdiffusion or interpenetration along and across a boundary of two compatible but dissimilar polymers in controlling interfacial adhesion in the interface region (interphase). The effect of interphase adhesion on the mechanical properties as well as the deformation and fracture behavior of sandwich laminates of poly(methylmethacrylate) (PMMA) and poly(vinylidene) fluoride (PVF2) have been studied. The interphase has been characterized using microscopy (optical, transmission, and scanning electron), dynamic mechanical spectroscopy, and x-ray microanalysis. Conditions of multiple crazing/fracture in the brittle phase (PMMA) and shear yielding in the ductile phase (PVF2) are discussed. Scanning electron micrographs confirm these deformation modes in PMMA-PVF2 sandwich composite laminates.  相似文献   

4.
New methods for stabilizing the interface of partially miscible and immiscible binary polymer blends and characterizing such an interface are described here. Interfacial modifications in four binary polymer blend systems namely PS/PMMA, PVC/EVA, PP/NBR, and PVC/SAN were induced by e‐beam and microwave irradiation. These changes have been characterized in terms of free volume measured by Positron lifetime technique and DSC as supplementary to free volume data. The changes observed in free volume parameters upon irradiation could not be connected to the changes at the interface and also not specific to composition of the blend. Owing to this limitation, we exploited the usefulness of hydrodynamic interaction parameter α derived from the very same free volume data to monitor the changes at the interface. The present results demonstrated that α is effective in revealing the changes at the interface and can be used to characterize the interfacial properties in partially miscible and immiscible polymer blends. Further, the results clearly show that microwave irradiation is a better route to stabilize the interface of a partially miscible or immiscible blend if its component polymers contain polar groups. E‐beam irradiation seems to be better route if the component polymers of the blend contain no polar groups. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 619–632, 2009  相似文献   

5.
A method in which the dissolution of a miscible polymer pair is traced in a differential scanning calorimetry cell is described. The polymer blend is initially prepared as an heterogeneous system with microdomains of one component embedded in the continuous matrix of the second polymer. Annealing the system in the DSC cell above the glass-transition temperature causes a spontaneous mixing of the polymer pair which can be observed by the progressive shift of the Tgs of both components until they merge. The time scale for dissolution and aspects of mass-transport phenomenon are thus determined for the specific blend, cellulose acetate-poly(styronephosphonate ester). Rather sharp progressive shifts of the Tgs are shown to prevail without significant broadening of the transition curve (ΔTg). Mass-transport analyses supported by electron microscopy observation of the blend, before and after annealing, suggest that the domain sizes remain nearly unchanged and the physicochemical makeup of the phase boundary interfaces determines the time scale of dissolution in the system. A model from which mean-value diffusion coefficients are calculated for both components at different annealing temperatures is reported.  相似文献   

6.
Drug release mechanisms from, and diffusion processes in, hydrophilic crosslinked polymeric systems were investigated in two macromolecular states: in the glassy and rubbery states during the early part of countercurrent water diffusion, and in the rubbery state after thermodynamic equilibrium between the network and the surrounding dissolution medium (water) was attained. Dilute, aqueous poly(vinyl alcohol) (PVA) solutions containing theophylline were crosslinked with glutaraldehyde. The crosslinking ratio, X, varied between 0.01 and 0.20 moles glutaraldehyde per mole of PVA repeating unit. Theophylline release from these rubbery matrices was followed as a function of time. It was determined that, within the range of crosslinking ratios studied, the crosslinked macromolecular structure affected the solute diffusion process. Theophylline release from crosslinked PVA slabs, which were originally dehydrated at 30°C, was also measured. The drug release process was significantly impeded in these systems, especially for samples with crosslinking ratio X ≥ 0.10. This behavior was explained in terms of relaxation of the macromolecular chains and possible existence of ordered chain structures. Glass-to-rubber transitions, a result of the countercurrent diffusion of water into the originally dried (glassy) polymer, shifted the fractional release of theophylline from a f(t1/2) to a f(tn) time dependence, with n taking values between 0.50 and 0.76. This type of release behavior indicates anomalous diffusion mechanisms. These results may be helpful in the development of swelling controlled drug delivery systems.  相似文献   

7.
A theory describing slow macromolecular reaction and interdiffusion in a compatible polymer blend is extended to consider H‐bonding. The known treatments of H‐bonding influence on the free energy of mixing and chains' mobilities are combined to calculate mutual diffusion coefficients in the framework of linear non‐equilibrium thermodynamics. Numerical calculations are performed for a blend of two random copolymers AC and BC to reveal the effect of H‐bonding (between A and B, B and B units) on the interdiffusion profiles. Then, the transformation of A units into B ones is included and the reaction‐diffusion equations are solved with the parameters corresponding to the blend of poly(tert‐butyl acrylate‐co‐styrene) with poly‐(acrylic acid‐co‐styrene) in which the thermal decomposition of tert‐butyl acrylate units takes place. The numerical calculations show that this system is suitable for the experimental verification of theoretical predictions concerning the interplay between macromolecular reaction and interdiffusion in polymer blends.  相似文献   

8.
During preparation of very thin polymer belnd films from a solution of polymers, the phase‐separated structures which are quite different from that observed for the bulk blend film was observed. From atomic force microscopic(AFM) observation, it is concluded that the surface undulation, which reflects the phase separated morphology of the blend system, is present. In the case of (polystyrene(PS)/poly(methyl methacrylate)(PMMA)) blend system, a large influence of end‐group chemistry on the surface morphology was observed. The phase identification of the (rubbery polymer/glassy polymer) binary blend thin films was successfully achieved by scanning vioscoelasticity microsopy(SVM).  相似文献   

9.
We consider an atomistic model of thermal welding at the polymer-polymer interface of a polyetherimide/polycarbonate blend, motivated by applications to 3D manufacturing in space. We follow diffusion of semiflexible chains at the interface and analyze strengthening of the samples as a function of the welding time tw by simulating the strain–stress and shear viscosity curves. The time scales for initial wetting, and for fast and slow diffusion, are revealed. It is shown that each component of the polymer blend has its own characteristic time of slow diffusion at the interface. Analysis of strain–stress demonstrates saturation of the Young's modulus at tw = 240 ns, while the tensile strength continues to increase. The shear viscosity is found to have a very weak dependence on the welding time for tw > 60 ns. It is shown that both strain–stress and shear viscosity curves agree with experimental data.  相似文献   

10.
This study focuses on the thermal and mechanical properties of 1,2-polybutadiene and 3,4-polyisoprene with an inorganic salt, bis(acetonitrile)dichloropalladium (II). Upon mixing in THF, effective crosslinks are formed because the acetonitrile ligands of the palladium salt are displaced by olefinic pendant groups of the polymers. Using a simple nth-order irreversible kinetic rate model, the palladium-catalyzed Heck-like exothermic reaction in solid films was characterized via isothermal and nonisothermal DSC. Thermal energy and mass balances appropriate to a batch reactor are developed from first principles and applied to the isothermal DSC output curve to calculate the time dependence of reactant conversion. Relevant kinetic parameters, such as the order of the reaction, the characteristic time constant for the chemical reaction, and the activation energy, have been determined. The kinetic data suggest that the palladium-catalyzed crosslinking reactions are diffusion controlled in the solid state because the reaction order is very close to unity. Higher glass transition temperatures (Tg) are measured by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) when (i) palladium concentration, (ii) annealing (heat treatment) time, and (iii) annealing temperature increase. After 2 h of annealing at 80°C, which corresponds to a temperature below the first exothermic crosslinking reaction (≅ 115°C) during nonisothermal DSC kinetic studies, rubbery materials containing very low concentrations of PdCl2 (i.e., 0.5 mol %) exhibit reinforced ductile stress-strain response. When annealing is performed at the peak temperature of the first exothermic event, the rubbery materials are transformed into glasses. Transition-metal compatibilization of atactic 1,2-polybutadiene and 3,4-polyisoprene via PdCl2 is demonstrated by monitoring the glass transition obtained from dynamic mechanical tan δ profiles. The effect of annealing this ternary reactive “blend” produces a glassy material exhibiting an elevated Tg and synergistic mechanical properties. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The surface morphology of thin bilayer polymer films on top of glass substrates was investigated. The bilayer consists of a blend film of protonated and deuterated polystyrene and an underlying deuterated polystyrene film. Choosing the thickness of the top film larger than 8 times and smaller than 2 times the radius of gyration of the chains enables the determination of film thickness and confinement effects. With diffuse neutron scattering at grazing incidence in the region of total external reflection, a depth sensitivity and a contrast even at the internal polymer–polymer interface was achieved. The underlying film is conformal to the substrate, and depending on the thickness of the top film two different types of roughness correlations are observed. Thin confined films nestle to the underlying polymer films, while the stiffness of thicker bulky films provides an independent morphology. In both cases, annealing above the glass-transition temperature yields an interdiffusion at the internal polymer–polymer interface, and the polymer–air surface remains essentially unchanged with respect to roughness correlations. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2862–2874, 1999  相似文献   

12.
This study explored the possibility of polymer interdiffusion for retaining thermoresponsive poly(N-isopropylacrylamide) (pNIPAAm) on polycarbonate (PC). It was hypothesized that interdiffusion could be facilitated either by increasing the annealing temperature or by treating PC using air plasma (AP) and ultra-violet ozone (UVO). The results showed that increasing annealing temperature only moderately improved pNIPAAm retention. Treating PC with AP led to an increase in surface-active groups and a greatly enhanced retention of pNIPAAm. UVO treatment, however, severely damaged the PC layer with no noticeable enhancement on pNIPAAm retention. The retained pNIPAAm films on PC exhibited thermoresponsive behavior as evidenced by water contact angle and desired cell attachment/detachment behaviors. These results illustrate the simplicity of using polymer interdiffusion to successfully retain pNIPAAm films on a polymer, and the resulting substrates would be less expensive and more versatile than those retained on brittle supports (e.g., glass) for applications that require resilient thermoresponsive substrates.  相似文献   

13.
It is possible to identify three distinct types of polymer adhesion on the basis of the physical state of adhesive and adherend: (1) rubbery polymer–rubbery polymer (R–R adhesion); (2) rubbery polymer–glassy polymer (R–G adhesion); (3) rubbery polymer–nonpolymer (R–S adhesion). Limitations of the diffusion and adsorption theories and their conflicting results are discussed within the framework of the proposed classification. By defining the physical state of the polymer as an adhesive or as an adherend, it is possible to eliminate many of the discrepancies commonly noted in attempted application of the diffusion and adsorption theories. As predicted by the Bueche-Cashin-Debye equation, the diffusion of a polymer into another should be greatly reduced as it changes from the rubbery to the glassy state. For this reason, diffusion, which depends to a great extent on the physical state of the polymer, is actually a limited, selective process. Assuming a 1013 poise bulk viscosity at glass temperature, self-diffusion constants of forty polymers were calculated to be 10?21cm.2/sec. or 10?5A.2/sec. This slow rate of diffusion is unmeasurable and insignificant. Adsorption, which is less dependent on the physical state of the polymer, is more frequently encountered.  相似文献   

14.
The interdiffusion of polymer chains across a polymer–polymer interface, and subsequent fracture to re-create the interface is reviewed. In particular, films formed via latex coalescence provide a very large surface area. Of course, latex film formation is a very important practical problem. Healing of the interface by interdiffusion is treated using the de Gennes reptation theory and the Wool minor chain reptation model. The self-diffusion coefficients of polystyrene and the polymethacrylates obtained by small-angle neutron scattering, SANS, direct non-radiative energy transfer, DET, and other techniques are compared. Reduced to 150,000 g/mol and 135°C, both polystyrene and poly(methyl methacrylate) have diffusion coefficients of the order of 10?16?10?17 cm2/sec. Variations in the diffusion coefficient values are attributed to the experimental approaches, theoretical treatments and molecular weight distribution differences. An activation energy of 55 kcal/mol was calculated from an Arrhenius plot of all polystyrene data reduced to a number-average molecular weight of 150,000 g/mol, using an inverse square molecular weight conversion method. Interestingly, this is in between the activation energies for the α and β relaxation processes in polystyrene, 84 and 35 kcal/mol, respectively. Fracture of polystyrene was considered in terms of chain scission and chain pull-out. A dental burr apparatus was used to fracture the films. For low molecular weights, chain pull-out dominates, but for high molecular weights, chain scission dominates. At 150,000 g/mol, the energy to fracture is divided approximately equally between the two mechanisms. Above a certain number average molecular weight (about 400,000 g/mol), the number of chain scissions remains constant at about 1024 scissions/m3. Energy balance calculations for film formation and film fracture processes indicate that the two processes are partly reversible, but have important components of irreversibility. From the interdiffusion SANS data, the diffusion rate is calculated to be about 1 Å/min, which is nine orders of magnitude slower than the dental burr pull-out velocity of about 0.8 cm/sec.  相似文献   

15.
The miscibility behavior of ternary blends made by the addition of di(ethyl-2 hexyl) phthalate (DOP) to a mixture of chlorinated polymers was investigated by differential scanning calorimetry. Two chlorinated polymer mixtures were selected: polyvinyl chloride (PVC) with a chlorinated polyethylene containing 48 wt% Cl (CPE48), and PVC with a chlorinated PVC containing 67 wt% Cl (CPVC67). Each binary DOP/chlorinated polymer pair is miscible whereas PVC/CPE48 and PVC/CPVC67 blends are immiscible. DOP/CPE48/PVC and DOP/PVC/CPVC67 ternary blends containing, respectively, more than 55 and 20% DOP exhibit a single glass transition temperature (Tg). The spinodal between the one-Tg zone and the two-Tg zone is symmetrical in the two cases. At high DOP concentrations, a quantitative analysis of the results leads to the conclusion of the presence of a true ternary phase. At low DOP concentrations where two Tgs are observed, the DOP is distributed equally between the two chlorinated polymers forming, in the DOP/CPE48/PVC case for instance, two binary DOP/CPE48 and DOP/PVC phases. The broad immiscibility zone observed in the DOP/CPE48/PVC ternary blend as compared to the DOP/PVC/CPVC67 blend appears to be mainly caused by the high molecular weight of CPE48, as compared with PVC and CPVC67. © 1994 John Wiley & Sons. Inc.  相似文献   

16.
Chlorinated nitrile rubber (Cl-NBR) has been blended with chlorinated ethylene propylene diene rubber (Cl-EPDM) in different ratios by a conventional mill mixing method. The effect of the blend ratio on processing characteristics, mechanical properties (such as tensile and tear strength, elongation at break, hardness, abrasion resistance, heat build-up and resilience), structure, morphology, glass transition temperature (Tg), thermal stability, flame retardancy, oil resistance, AC conductivity, dielectric properties and transport behavior of petrol, diesel and kerosene were investigated. The shift in absorption bands of blends studied from FTIR spectra, single Tg from DSC analysis and decrease in amorphous nature from XRD showed the molecular miscibility in Cl-NBR/Cl-EPDM blends. SEM images showed the uniform mixing of both Cl-NBR and Cl-EPDM in a 50/50 blend ratio. The TGA curves indicated the better thermal stability of the polymer blend. The elongation at break, heat build-up, resilience and hardness of the polymer blend decreases with an increase in Cl-NBR content in the blend whereas the flame and oil resistance were increased with increase in Cl-NBR content. Among the polymer blends, the maximum torque, tensile strength, tear and abrasion resistance was obtained for the 50/50 blend ratio because of the effective interfacial interactions between the blend components. AC conductivity and dielectric properties of polymer blend increased with increase in the ratio of Cl-NBR in the blend. Different transport properties such as diffusion, permeation and sorption coefficient were measured with respect to nature of solvent and different blend ratios. Temperature dependence of diffusion was used to estimate the activation parameters and the mechanism of transport found to be anomalous.  相似文献   

17.
聚合物/聚合物界面的分子链扩散问题在塑料注塑、焊接、共混等领域普遍存在.动态流变法是研究聚合物/聚合物界面分子链扩散的一种有力手段,这种方法对于界面间分子链扩散的监测非常灵敏.本文简述了用动态流变法研究聚合物/聚合物界面扩散的原理、实验方法以及优点,着重讨论了采用该方法研究初始界面分子链末端分布对扩散机理的影响、对称聚合物/聚合物界面分子链扩散的量化,非对称聚合物/聚合物界面的相互扩散,分子量多分散性对聚合物/聚合物界面扩散的影响,聚合物/聚合物界面间的流动和扩散耦合以及近年来动态流变法在化学反应型聚合物/聚合物界面的应用进展.  相似文献   

18.
This paper describes experiments that investigate the use of low glass transition temperature (T g) latex particles consisting of oligomer to promote polymer diffusion in films formed from high molar mass polymer latex. The chemical composition of both polymers was similar. Fluorescence resonance energy transfer (FRET) was used to follow the rate of polymer diffusion for samples in which the high molar mass polymer was labeled with appropriate donor and acceptor dyes. In these latex blends, the presence of the oligomer (with M n = 24,000 g/mol, M w/M n = 2) was so effective at promoting the interdiffusion of the higher molar mass poly(butyl acrylate-co-methyl methacrylate; PBA/MMA = 1:1 by weight) polymer (with M n = 43,00 g/mol, M w/M n = 3) that a significant amount of interdiffusion occurred during film drying. Additional polymer diffusion occurred during film aging and annealing, and this effect could be described quantitatively in terms of free-volume theory. This paper is dedicated to Professor Haruma Kawaguchi to honor his many contributions to the field of latex particles and their applications.  相似文献   

19.
The transport properties of small organic molecules in molten poly(vinyl chloride) (PVC)/atactic poly(methyl methacrylate) (PMMA) blends and their homopolymers were studied with inverse gas chromatography. The elution profiles resulting from various organic solvents and different experimental conditions were used for measuring diffusion and partition coefficients. With the van Deemter equation and retention volumes at infinite dilution, diffusion coefficients of 10?7 to 10?8 cm2/s and partition coefficients of 10–50 were calculated. The dependence of the diffusion and partition coefficients on experimental variables such as the blend concentration, temperature, and solute nature was examined. The presence of PMMA in PVC blends affected the sorption behavior of the PVC matrix up to a certain concentration. Beyond that, it was hard to derive any composition–diffusivity dependence. On the contrary, the diffusion and partition coefficients were greatly influenced by changes in the temperature and by the nature of the solute. For those solutes (e.g., chlorinated hydrocarbons) showing stronger interactions with polymer blends (higher negative values for the Flory–Huggins interaction parameter χ1(23)), higher diffusion and partition coefficients were obtained. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 267–279, 2004  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号