首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of CO complexation on highly exothermic vanadium oxidation reactions is evaluated. We study the chemiluminescent (CL) reaction products formed when vanadium vapor entrained in Ar or CO is oxidized by O3 or NO2. The multiple collision V+Ar+O3→VO*(C 4Σ, 4Φ, 2X)+Ar+O2 reactive encounter yields two previously unreported VO excited states, whereas the V+Ar+NO2→VO*+Ar+NO reactive encounter populates states up to and including VO* C 4Σ. The multiple collision V+nCO+O3 reactive encounter would appear to form a VOCO excited state complex, emitting in the region 420–560 nm, via the formation and oxidation of V(CO)2 viz. V(CO)2+O3→VOCO*+CO+O2 and a relaxed VO excited state emitter via V+nCO+O3→VO*+nCO+O2 where the VO excited state excitation is mediated by V–CO complexation. In complement, the much less exothermic V–NO2 encounter displays an emission which, in concert with previous studies of CO complexation, suggests the formation of a VO(CO)2 excited state complex viz. V(CO)2+NO2→VO(CO)2*+NO. The experiments characterizing CL are complemented by comparative laser-induced fluorescence studies of the VO X 4Σ–CO and Ar interactions and their influence on the VO C 4Σ–X 4Σ laser-induced excitation spectrum. These studies, in conjunction with further attempts to excite LIF in the 420–560 nm region, suggest that the observed complex emissions result primarily from VO excited state interactions. Complementary time-of-flight mass spectroscopy of vanadium and vanadium-oxide–carbonyl complex formation demonstrates the formation of V(CO), V(CO)2, V2(CO), and VOCO, the latter three of which demonstrate clear metastable-ion dissociation peaks for the processes VOCO+→V++CO2, V(CO)2+→V++2CO, and V2(CO)+→V2++CO, suggesting that these vanadium complexes when formed in a reaction-based environment may be photodissociated with light in the visible and ultraviolet regions.  相似文献   

2.
A sensitive voltammetric method has been developed for the determination of total or single species of sulfur anions containing sulfide, sulfite and thiosulfate. The method is based on the catalytic effect of tris(2,2'-bipyridyl)Ruthenium(II) (Ru(bpy)2+ 2) as a homogeneous mediator on the oxidation of those anions at the surface of a glassy carbon electrode. A reversible redox couple of Ru(II)/Ru(III) were observed as a solute in aqueous solution. Cyclic voltammetry study showed that the catalytic current of the system depends on the concentration of the anions. Optimum pH values for voltammetric determination of sulfite, thiosulfate and sulfide has been found to be 5.6, 10.0 and 10.0, respectively. Under the optimized conditions the calibration curves have been obtained linear in the concentration ranges of 0.8–500.0, 0.4–1000.0 and 0.5–5000.0 µmol L− 1 of SO32−, S2O32− and S2−, respectively. The detection limits have been calculated to be 0.40, 0.17 and 0.33 µmol L− 1 for SO32−, S2O32− and S2−, respectively. The diffusion coefficients of sulfite and thiosulfate have been estimated using chronoamperometry. The chronoamperometric method also has been used to determine the catalytic rate constant for catalytic reaction of the Ru(bpy)2+ 2 with sulfite and thiosulfate. Finally the proposed method has been used for the determination of total sulfur contents in real samples of water and wastewater. Moreover the sulfite content in sugar and sulfur dioxide in air has been determined with satisfactory results.  相似文献   

3.
This work presents alternatives for Fe and Co determination in pharmaceutical samples using flow analysis. The first procedure describes Fe extraction in mineral/vitamin complexes. The best conditions were reached when HNO3 concentration and volume, sample mass and shaking time were 1.0 mol l−1, 5 ml, 25 mg and 10 min. Three mineral/vitamin complexes of known concentrations (ranging from 12 to 32 g kg−1) were analyzed (10 authentic replicates for each) and recoveries of around 100% were obtained when compared with a well-established mineralization procedure employing concentrated HNO3 and H2O2 (30% w/v). The second work part shows the employment of Tiron and H2O2 reaction for Co determination in a drug for inappetence. The results (352±18.7 mg kg−1) were compared with those using Electrothermal Atomic Absorption Spectrometry—ETAAS (346±15.7 mg kg−1). The proposed method showed detection and quantification limits of 0.20 and 0.70 μg l−1, respectively. Both procedures for Fe and Co determination presented time, reagent and effort reduction.  相似文献   

4.
A large data set obtained by a one-year monthly determination of ions (F, Cl, Br, NO3, NO2, PO43−, SO42−, Na+, K+, Ca2+, Mg2+, NH4+) and trace metals of environmental concern (Ni, Co, Mn, Fe) from the tributaries of Lake Como (Lombardy, Northern Italy) was treated by three-way Principal Component Analysis. The results showed that the chemical features of the investigated rivers are mainly related to the lithology of the watershed. Some cases of contamination were evidenced and rationalized on the basis of anthropic pollution or on the basis of the geochemical features of the territory. The method here proposed allows an easy and quick interpretation of the chemical data by means of graphical devices. The information extracted by the three-way models would be very useful to regional agencies in developing a strategy to manage water resources in the whole basin of Lake Como.  相似文献   

5.
This work proposes a new procedure for on-line electro-oxidative leaching and spectrophotometric determination of uranium in ore samples. By associating a conventional flow injection system, used for uranium determination with Arsenazo III, with an on-line system for electro-oxidative leaching, a fully integrated system was assembled. The systems were integrated after achieving optimum conditions for uranium determination and leaching. According to the results obtained in the present work, a current density of 280 mA cm−2 generated enough hypochlorite ions in the electrolyte solution (3.6 mol L−1 HCl + 2% (w/v) NaCl) to promote quantitative oxidation of U(IV) to U(VI) thus improving the extraction efficiency. The slurry density did not significantly affect the performance of the system and the increasing temperature resulted in a decrease in extraction efficiency. This methodology was applied in the determination of U3O8 in four ore samples and the results obtained agreed with those obtained by ICP-MS after conventional wet acid digestion of the samples.  相似文献   

6.
Chemiluminescence (CL) in oxidation of organosodium compounds by O2 in THF was studied. Emitters of CL are excited complexes of polycyclic aromatic hydrocarbons, excimers1(R·R)*. The mechanism of their formation was proposed. The Na+, R.−+O2 CL system is a unique source for the selective generation of excimers of aromatic hydrocarbons. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 284–288, February, 1997.  相似文献   

7.
We are reporting the highly sensitive determination of hydroxylamine (HA) using 2-mercapto-4-methyl-5-thiazoleacetic acid (TAA) capped fused spherical gold nanoparticles (AuNPs) modified Au electrode. The fused TAA-AuNPs were immobilized on (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film, which was pre-assembled on Au electrode. The immobilization of fused TAA-AuNPs on MPTS sol-gel film was confirmed by UV-vis absorption spectroscopy and atomic force microscopy (AFM). The AFM image showed that the AuNPs retained the fused spherical morphology after immobilized on sol-gel film. The fused TAA-AuNPs on MPTS modified Au electrode were used for the determination of HA in phosphate buffer (PB) solution (pH = 7.2). When compared to bare Au electrode, the fused AuNPs modified electrode not only shifted the oxidation potential of HA towards less positive potential but also enhanced its oxidation peak current. Further, the oxidation of HA was highly stable at fused AuNPs modified electrode. Using amperometric method, determination of 17.5 nM HA was achieved for the first time. Further, the current response of HA increases linearly while increasing its concentration from 17.5 nM to 22 mM and a detection limit was found to be 0.39 nM (S/N = 3). The present modified electrode was also successfully used for the determination of 17.5 nM HA in the presence of 200-fold excess of common interferents such as urea, NO2, NH4+, oxalate, Mn2+, Na+, K+, Mg2+, Ca2+, Ba2+ and Cu2+. The practical application of the present modified electrode was demonstrated by measuring the concentration of HA in ground water samples.  相似文献   

8.
9.
Cyclic voltammetry of antimony was studied in aqueous media (HCl-LiCl) and in nonaqueous media after extraction with 20% tri-n-butylphosphate in toluene, with a rotating glassy carbon disc electrode. Reduction of antimony to the element in aqueous media is nearly reversible, but irreversible in nonaqueous media. Anodic stripping voltammetric and chronopotentiometric determinations were also studied in nonaqueous media; methanol and LiCI, NH4SCN or NH4NO3, were used as base electrolytes. In nonaqueous media, antimony can be determined down to concentrations of 1O−8 M by stripping voltammetry, and lO−7 M by stripping chronopotentiometry. Electrochemical stripping determinations of 10−6 M antimony(III) were not affected by Co2+, Ni2+, Cd2+, Zn2+ or As3+ (5 · 10−3 M), ag+ (4 · 10+4 M in stripping voltammetry or 10−3 M in stripping chronopotentiometry), Hg2+ (5 · 10−4M), Pb2+ (3 · 10−4 M), Cu2+ (1.5 · 10−4 M)Sn2+ and Sn4+ (7 · 10−4 M), Fe3+ (4 · 10−4 M), Au3+ (5 · 10−5 M) and Bi3+ (1.5 · 10−5 M). Thestripping chronopotentiometric determination showed better selectivity.  相似文献   

10.
Glasses with nominal compositions SrFe10Al2O19+4(SrB2O4+Sr2B2O5) (1) and SrFe9Al3O19+4(SrB2O4+Sr2B2O5) (2) were prepared by rapid quenching of melts. Thermal treatment of glass samples at 600–900 °C resulted in crystallization of the magnetic phase SrFe12−x AlxO19 (x = 1.1±0.1) and strontium borates. Platelet hexaferrite particles with average sizes from (250×60) nm2 to (450×140) nm2 were prepared. The coercive force of glass ceramics is 580 and 475 kA m−1 for glasses 1 and 2, respectively. The coercive force of 580 kA m−1 is the highest known value compared to hexaferrite particles prepared earlier by glass crystallization.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 74–77, January, 2005.  相似文献   

11.
The 2A12E emission spectrum of CH3CP+ in the gas phase has been observed in the 530–590 nm region. The cations were produced by electron impact on either an effusive beam or seeded helium supersonic free jet or CH3CP. Two pairs of spin-orbit separated bands are identified: O00, OO and 2O1, O1. The derived constants are (in cm−1): T0=18656(1), aO=−85(2) and ν″2=1503(2).  相似文献   

12.
Surleva AR  Neshkova MT 《Talanta》2008,76(4):914-921
A new flow injection approach to total weak acid-dissociable (WAD) metal–cyanide complexes is proposed, which eliminates the need of a separation step (such as gas diffusion or pervaporation) prior to the detection. The cornerstone of the new methodology is based on the highly selective flow-injection potentiometric detection (FIPD) system that makes use of thin-layer electroplated silver chalcogenide ion-selective membranes of non-trivial composition and surface morphology: Ag2 + δSe1 − xTex and Ag2 + δSe. An inherent feature of the FIP-detectors is their specific response to the sum of simple CN + Zn(CN)42− + Cd(CN)42−. For total WAD cyanide determination, ligand exchange (LE) and a newly developed electrochemical pre-treatment procedure for release of the bound cyanide were used. The LE pre-treatment ensures complete recovery only when the sample does not contain Hg(CN)42−. This limitation is overcome by implementing electrochemical pre-treatment which liberates completely the bound WAD cyanide through cathodic reduction of the complexed metal ions. A complete recovery of toxic WAD cyanide is achieved in the concentration range from 156 μg L−1 up to 13 mg L−1. A three-step protocol for individual and group WAD cyanide speciation is proposed for the first time. The speciation protocol comprises three successive measurements: (i) of non-treated, (ii) LE-exchange pre-treated; (iii) electrochemically pre-treated sample. In the presence of all WAD complexes this procedure provides complete recovery of the total bound cyanide along with its quantitative differentiation into the following groups: (1) Hg(CN)42−; (2) CN + Cd(CN)42− + Zn(CN)42−; (3) Cu(CN)43− + Ni(CN)42− + Ag(CN)2. The presence of a 100-fold excess in total of the following ions: CO32−, SCN, NH4+, SO42− and Cl does not interferes. Thus the proposed approach offers a step ahead to meeting the ever increasing demand for cyanide-species-specific methods. The equipment simplicity makes the procedure a good candidate for implementing in portable devices for in-field cyanide monitoring.  相似文献   

13.
A novel rapid flow injection method with chemiluminescence (CL) detection was established for the determination of ciprofloxacin (CPLX), which is an antibiotic commonly used. The method is based on CL of Ce(IV)–SO32− sensitized by Tb3+–CPLX, and showed the intensive bands characteristic of Tb3+ (5D47F5). The optimum conditions for CL emission were investigated. The linear relationship between the relative CL intensity and the concentration of CPLX is in the range of 9.0×10−9–1.0×10−6 mol/l with a detection limit of 3.1×10−10 mol/l. The relative standard deviation is 2.8% (n=11) for a level of 5.0×10−8 mol/l. The method was applied to the analysis of CPLX in human serum and urine samples with satisfactory results. The possible mechanism for this sensitized CL reaction is also discussed.  相似文献   

14.
Proteins can enhance the chemiluminescence (CL) intensity of the 1,10-phenanthroline–H2O2–cetyltrimethylammonium bromide (CTMAB)–Cu(II) system because unsaturated complexes of Cu(II) with protein have a much stronger catalytic effect on the CL reaction than does Cu(II). On this basis, a new flow injection analysis method for detection of some proteins was established. The method gives linear responses over two orders of magnitude and detection limits at the 0.02–0.05 μg ml−1level for bovine serum albumin, human serum albumin, γ-globulin, and egg albumin. The method was used for determination of proteins in human serum with satisfactory results.  相似文献   

15.
The rate constants and product ion branching ratios were measured for the reactions of various small negative ions with O2(X 3Σg) and O2(a 1Δg) in a selected ion flow tube (SIFT). Only NH2 and CH3O were found to react with O2(X) and both reactions were slow. CH3O reacted by hydride transfer, both with and without electron detachment. NH2 formed both OH, as observed previously, and O2, the latter via endothermic charge transfer. A temperature study revealed a negative temperature dependence for the former channel and Arrhenius behavior for the endothermic channel, resulting in an overall rate constant with a minimum at 500 K. SF6, SF4, SO3 and CO3 were found to react with O2(a 1Δg) with rate constants less than 10−11 cm3 s−1. NH2 reacted rapidly with O2(a 1Δg) by charge transfer. The reactions of HO2 and SO2 proceeded moderately with competition between Penning detachment and charge transfer. SO2 produced a SO4 cluster product in 2% of reactions and HO2 produced O3 in 13% of the reactions. CH3O proceeded essentially at the collision rate by hydride transfer, again both with and without electron detachment. These results show that charge transfer to O2(a 1Δg) occurs readily if the there are no restrictions on the ion beyond the reaction thermodynamics. The SO2 and HO2 reactions with O2(a) are the only known reactions involving Penning detachment besides the reaction with O2 studied previously [R.S. Berry, Phys. Chem. Chem. Phys., 7 (2005) 289–290].  相似文献   

16.
A novel hybrid bifunctional sensing platform for simultaneous determination of NO and O2 has been developed, whereby hematite nanotubes are immobilized into the chitosan matrix onto a gold electrode (labeled as HeNTs-Chi/Au). The HeNTs distributed in porous-structured chitosan matrix not only offer abundant active sites for bifunctional sensing of NO and O2, but also facilitate oxidation of NO and reduction of O2 dramatically. Straight calibration curves are achieved in analyte concentration ranges of 5.0 × 10−8 to 1.25 × 10−6 mol L−1 for NO and 2.5 × 10−7 to 6.0 × 10−6 mol L−1 for O2. Also, the detection limits are low of 8.0 × 10−9 mol L−1 for NO and 5.0 × 10−8 mol L−1 for O2. Such an efficient bifunctional sensor for NO and O2 offers great potential in quantitation of NO levels in biological and medical systems, since NO level is highly regulated by various reactive oxygen species.  相似文献   

17.
The structures of two complexes, [Ph3PCH2Ph]+[Bu3SnCl2] and [Ph3AsCH2COPh]+[Ph3SnCl2], have been determined by X-ray diffraction. Both materials are monoclinic, space group P21/c. Unit cell data for [Ph3PCH2Ph]+−[Bu3SnCl2] are a 9.8521(6), b 16.9142(4), c 22.3517(7) Å, β 91.4235(9)°; and for [Ph3AsCH2COPh]+[Ph3SnCl2] a 34.9760(3), b 11.1290(5), c 24.2410(2) Å, β 108.56(2)°, and both consist of the component ionic species. The organotin anions each have trigonal bipyramidal geometry with equatorial organic groups and axial halogens. In the [Ph3SnCl2] anion the two Sn---Cl bond distances are the same (2.58(1) and 2.60(1) Å), but in [Bu3SnCl2], as in [Me3SnCl2], they are substantially different (2.573(7) and 2.689(6) Å). The Sn---C bond distances also vary: [Ph3SnCl2] 2.15(4), 2.16(3) and 2.25(5); [Bu3SnCl2] 2.21(1), 2.20(2) and 2.29(2) Å. Tin-119 Mössbauer data for these and several other similar complexes are also reported.  相似文献   

18.
The rate of decomposition of H2O2 in the presence of Fe(III)-y complex (y is ethylenebis(oxyethylenedinitrilo)tetraacetic acid (EGTA) anion) was investigated under variable conditions of pH and temperature, various water-miscible solvents, and different concentrations of H2O2, [Fe-y], and acetate ions. The following rate law holds: Rate = (k1K3K4/[H+]) [Fe-y(OH)]2− [H2O2] at pH less than 9.80, and Rate = (k2K5[H+]/K3) [Fe-y(OH)2]3−[OOH] at pH above 9.80. The values of k1K4and k2K5 at 25 °C were found to be 1523 and 0.747 M−1 S−1, respectively. Activation enthalpy and activation entropy for this reaction were determined from Arrhenius plots and found to be ΔH* = 34.38 K J mol−1 and ΔS* = −167.2 J K−1 mol−1.  相似文献   

19.
Through a combination of Raman spectroscopy, multi-element NMR spectroscopy and chemical analysis, the differences between the action of carbonate and carbamate as agents for dissolving Cs3PMo12O40xH2O(s) (CPM) and ZrMO2O7(OH)2(H2O)2(s) (ZM) have been elucidated. Alkaline H2NCO2/HCO3/CO32− solutions, derived from the dissolution of ammonium carbamate (NH4H2NCO2; AC), dissolve CPM by base hydrolysis of the PMo12O403− Keggin anion, ultimately forming [MoO4]2− and PO43− when excess base is present. If the initial concentration of H2NCO2/HCO3/ CO32− is lowered, base hydrolysis is incomplete and the dissolved species include [Mo7O24]6− and [P2Mo5O23]6−, and undissolved solid Cs3PMo12O40, CsxNH7−xPMo11O39, and CsxNH6−xMo7O24 remain. Na2CO3 solutions dissolve Cs3PMo12O40 through a similar mechanism, but the dissolution rate is much lower. We attribute this difference to the different buffering effects of H2NCO2/HCO3/CO32− and CO32−/HCO3 solutions, and the instability of carbamic acid, the protonated form of H2NCO2 (which rapidly decomposes into NH3 and CO2). The ability of NH3 to produce NH4+ and OH, together with the evolution of CO2 gas, drive the reaction forward. Low temperature measurements under conditions where pure H2NCO2 is kinetically stable, allowed the rates of dissolution of CPM by H2NCO2 and CO32− to be compared directly, confirming the faster dissolution by H2NCO2. Compared to CPM, the dissolution of ZM by H2NCO2/HCO3/CO32− is a much slower process and is driven by the formation of soluble ZrIV-carbonate complexes and MoO42−. The driving force for the dissolution of ZM is the superior complexing ability of carbonate over carbamate; consequently solutions containing a higher carbonate concentration dissolve ZM faster.  相似文献   

20.
Detailed height profiles of stratospheric nitric acid mixing ratios have been derived with a baloon borne chemical ionization mass spectrometer by applying several ion molecule reaction schemes, each associated to a specific and selective ion source. These ions (CO3, Cln, CF3O, and CF3OH2O) give rise to specific product ions (mainly CO3HNO3, NO3HCl, NO3HF, and CF3OHNO3) upon reaction with ambient nitric acid molecules. This paper reports on the instrumental details as well as on the results obtained during two balloon flights with the instrument. Within the accuracy of the measurements, the nitric acid height profiles obtained with the three different ion sources are in good agreement with one another as well as with literature data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号