首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A time-resolved cathodo-and photoluminescence study of nanostructural modifications of Al2O3 (powders and ceramics) excited by heavy-current electron beams, as well as by pulsed synchrotron radiation, is reported. It was found that Al2O3 nanopowders probed before and after Fe+ ion irradiation have the same phase composition (the γ-phase/δ-phase ratio is equal to 1), an average grain size equal to ~17 nm, and practically the same set of broad cathodoluminescence (CL) bands peaking at 2.4, 3.2, and 3.8 eV. It was established that Al2O3 nanopowders exhibit fast photoluminescence (PL) (a band at 3.2 eV), whose decay kinetics is described by two exponential stages (τ1 = 0.5 ns, τ2 = 5.5 ns). Three bands, at 5.24, 6.13, and 7.44 eV, were isolated in the excitation spectrum of the fast PL. Two alternate models of PL centers were considered, according to which the 3.2-eV luminescence either originates from radiative relaxation of the P? centers (anion-cation vacancy pairs) or is due to the formation of surface analogs of the F+ center (F S + -type centers). In addition to the fast luminescence, nano-Al2O3 was found to produce slow luminescence in the form of a broad band peaking at 3.5 eV. The excitation spectrum of the 3.5-eV luminescence obtained at T = 13 K exhibits two doublet bands with maxima at 7.8 and 8.3 eV. An analysis of the luminescent properties of nanostructural and single-crystal Al2O3 suggests that the slow luminescence of nanopowders at 3.5 eV is due to radiative annihilation of excitons localized near structural defects.  相似文献   

2.
In this paper, a facile co-precipitation process for preparing mono-dispersed core–shell structure nanoparticles is reported. The 110 nm SiO2 cores coated with an yttrium aluminum garnet (Y3Al5O12) layer doped with Er3+ were synthesized and the influence of the concentration ratio of [urea]/[metal ions] on the final product was investigated. The structure and morphology of samples were characterized by the X-ray powder diffraction, Fourier transform IR spectroscopy and transmission electron microscopy, respectively. The results indicate that a layer of well-crystallized garnet Y3Al5O12:Er3+ were successfully coated on the silica particles with the thickness of 20 nm. The near infrared and upconversion luminescent spectra of the SiO2@Y3Al5O12:Er3+ powders further confirm that a Y3Al5O12:Er3+ coating layer has formed on the surface of silica spherical particles.  相似文献   

3.
Valence states of metal ions and the phase composition of nanocrystalline Al2O3 (of the original oxide and the oxide irradiated by high-energy Fe+ ions) are studied by using x-ray emission Al L2, 3 and O Kα spectra. It is established that the shape of the Al L2, 3 spectra strongly changes as one goes from the original (bulk) Al2O3 to nanocrystalline oxide, while the O Kα spectra remain practically unchanged. Moreover, irradiation by high-energy Fe+ ions results in slight additional changes in the x-ray spectral characteristics of the aluminum oxides under study. The obtained experimental data are compared with the results of theoretical calculations of the electronic structure of α and γ phases of Al2O3 performed using the LDA formalism. Using the results of x-ray spectral studies, electronic structure calculations, and x-ray diffraction analysis, it is shown that the revealed spectral differences between the nanocrystalline state of aluminum oxide and the bulk material can be interpreted as a phase transition from the α phase to the γ phase of Al2O3 with an addition of bayerite.  相似文献   

4.
In this study, FeNi3/Al2O3 core-shell nanocomposites, where individual FeNi3 nanoparticles were coated with a thin layer of alumina, were fabricated by a modified sol-gel method. Several physical characterizations were performed on the samples of FeNi3/Al2O3 nanocomposites with different thickness of Al2O3 shell. The encapsulation of FeNi3 nanoparticles with alumina stops FeNi3 agglomeration during heat treatment, and prevents interaction among the closely spaced magnetic FeNi3 nanoparticles. The Al2O3 insulating shell improves the soft magnetic properties of FeNi3. The study of the complex permeability of the samples shows that the real part μ’ of the permeability of the sample with Al molar content of 20% (Al/(Fe+Ni)) is as high as 12, and independent of frequency up to at least 1 GHz. The tunneling magnetoresistance arising from the presence of the Al2O3 shell have also been studied.  相似文献   

5.
Optical properties of Ho3+-doped Lu3Al5O12 and (Lu,Y)3Al5O12 crystals were investigated and compared. Substitution of Y for Lu in the host garnet Lu3Al5O12 results in broad absorption and emission spectra, and improvements in the laser behavior of Ho3+. Pumped by Tm:fiber laser, a maximum output power of 5.02 and 5.73 W of Ho-doped Lu3Al5O12 and (Lu,Y)3Al5O12 have been obtained, respectively. The center lasing wavelength are 2124.5 and 2123.0 nm for Lu3Al5O12 and (Lu,Y)3Al5O12, respectively.  相似文献   

6.
The present study analyzes the morphological transformations of reaction products i.e., MgO, MgAl2O4 occurring during the reaction between SiO2 and Al-Mg alloy in Al-Mg-SiO2 composite processed by the liquid metallurgy technique. Different phases of platelet and hexagonal morphologies are detected and their composition analysis by EDS has confirmed them as being transition phases existing between MgO, MgAl2O4 and Al2O3. This study has also revealed the gradual transformation of (i) MgO needles to octahedral MgAl2O4 through Mg-Al-Si-O and Mg-Al-O transition phases having platelet morphologies and (ii) MgAl2O4 to Al2O3 through hexagonal transition phases on holding of Al-5Mg-SiO2 and Al-1Mg-SiO2 composites respectively at 1023K. Fully developed α-Al2O3 crystals are not observed under the present experimental conditions, wherein the Mg content is well above the equilibrium Mg content required for the formation of stable Al2O3 (<0.05 wt. %). PACS 05.70.Np  相似文献   

7.
A thick Al2O3/aluminum (Al) structure has been fabricated by oxidation of Al with 68wt% and 98wt% nitric acid (HNO3) aqueous solutions at room temperature. Measurements of the Al2O3 thickness vs. the oxidation time show that reaction and diffusion are the rate-determining steps for oxidation with 68wt% and 98wt% HNO3 solutions, respectively. Observation of transmission electron micrographs shows that the Al2O3 layer formed with 68wt% HNO3 has a structure with cylindrically shaped pores vertically aligned from the Al2O3 surface to the Al2O3/Al interface. Due to the porous structure, diffusion of HNO3 proceeds easily, resulting in the reaction-limited oxidation mechanism. In this case, the Al2O3/Al structure is considerably rough. The Al2O3 layer formed with 98wt% HNO3 solutions, on the other hand, possesses a denser structure without pores, and the Al2O3/Al interface is much smoother, but the thickness of the Al2O3 layer formed on crystalline Al regions is much smaller than that on amorphous Al regions. Due to the relatively uniform Al2O3 thickness, the leakage current density flowing through the Al2O3 layer formed with 68wt% HNO3 is lower than that formed with 98wt% HNO3.  相似文献   

8.
The influence of a high-power ion beam on polycrystalline oxides (V2O5, MoO3, and WO3) is investigated. Oxide irradiation with ion beams with current densities of greater than ~30 A/cm2 is established to initiate changes in the color of irradiated layers and lead to surface-layer particle melting. It is demonstrated that a distinctive feature of the interaction between a high-power ion beam and V2O5 is the formation of surface nanosheets and nanowires whose characteristic cross-sectional size and thickness are ~1 μm and up to ~40 nm, respectively. The nanosheets are generated near emerging surface cracks if the beam current density is ~100 A/cm2. Possible mechanisms of surface nanostructures formation under the action of pulsed ion beams are discussed.  相似文献   

9.
The phase chemical composition of an Al2O3/Si interface formed upon molecular deposition of a 100-nm-thick Al2O3 layer on the Si(100) (c-Si) surface is investigated by depth-resolved ultrasoft x-ray emission spectroscopy. Analysis is performed using Al and Si L2, 3 emission bands. It is found that the thickness of the interface separating the c-Si substrate and the Al2O3 layer is approximately equal to 60 nm and the interface has a complex structure. The upper layer of the interface contains Al2O3 molecules and Al atoms, whose coordination is characteristic of metallic aluminum (most likely, these atoms form sufficiently large-sized Al clusters). The shape of the Si bands indicates that the interface layer (no more than 10-nm thick) adjacent to the substrate involves Si atoms in an unusual chemical state. This state is not typical of amorphous Si, c-Si, SiO2, or SiOx (it is assumed that these Si atoms form small-sized Si clusters). It is revealed that SiO2 is contained in the vicinity of the substrate. The properties of thicker coatings are similar to those of the 100-nm-thick Al2O3 layer and differ significantly from the properties of the interfaces of Al2O3 thin layers.  相似文献   

10.
Glassy LiPO3/crystalline Al2O3 and glassy LiPO3/crystalline ZrO2 (0–12.5 vol.% of oxide fillers) composite solid electrolytes have been prepared by glass matrix softening. Their thermal and transport properties have been investigated by differential scanning calorimetry (DSC) and impedance spectroscopy methods. The addition of ZrO2 leads to a decrease in the crystallization temperature of LiPO3 glass. It was found that the conductivity behavior depends on the nature of the dispersed addition. In the case of the Al2O3 addition, the increase in the electrical conductivity is observed. The ionic conductivity of the LiPO3/10% Al2O3 composite reaches 5.8 × 10?8 S/cm at room temperature. In contrast, the conductivity in the LiPO3/ZrO2 composite system decreases.  相似文献   

11.
Well-dispersed Nd:Y2O3 powders with uniform particle size of about 60 nm were synthesized from freeze-dried precursors. Highly transparent 2 at.% Nd:YAG ceramics were fabricated from the as-synthesized Nd:Y2O3 powders and commercial Al2O3 powders by vacuum sintering at 1,750 °C for 5 h. Phase evolution, microstructures, and spectroscopic properties of the Nd:YAG transparent ceramics were investigated. Freeze-drying played an important role in the synthesis of high-quality Nd:Y2O3 nanosized powders, which were essential for the fabrication of highly transparent Nd:YAG ceramics. Optical transmittance of a 3-mm thick sample reached 82% in the wavelength range of 200–900 nm. 5.23 W output power was obtained with 14.3 W diode laser pumping, giving a slope efficiency of 36.5%.  相似文献   

12.
The luminescence spectra of single-crystal films and bulk crystals of yttrium-aluminum garnet Y3Al5O12 and Ce3+-activated Y3Al5O12 were investigated. It was shown that the room-temperature luminescence intensity of the Ce3+-free single-crystal Y3Al5O12 film was considerably lower than that of the bulk crystals, while the luminescence intensity of the Ce3+ ions in the Y3Al5O12:Ce films was considerably higher than that one for the corresponding bulk crystal.  相似文献   

13.
The extent and phase chemical composition of the interface forming under atomic layer deposition (ALD) of a 6-nm-thick Al2O3 film on the surface of crystalline silicon (c-Si) has been studied by depthresolved, ultrasoft x-ray emission spectroscopy. ALD is shown to produce a layer of mixed Al2O3 and SiO2 oxides about 6–8 nm thick, in which silicon dioxide is present even on the sample surface and its concentration increases as one approaches the interface with the substrate. It is assumed that such a complex structure of the layer is the result of interdiffusion of oxygen into the layer and of silicon from the substrate to the surface over grain boundaries of polycrystalline Al2O3, followed by silicon oxidation. Neither the formation of clusters of metallic aluminum near the boundary with c-Si nor aluminum diffusion into the substrate was revealed. It was established that ALD-deposited Al2O3 layers with a thickness up to 60 nm have similar structure.  相似文献   

14.
Alumina micro- and nanopowders with the particle size from 200 μm to 40 nm synthesized by the sol-gel method are studied. The particle size dependence of γ-Al2O3→α-Al2O3 phase transformation is studied by differential thermal analysis, X-ray diffraction method, and transmission electron microscopy. X-ray diffraction data show that for alumina nanoparticles γ-Al2O3→θ-Al2O3 phase transformation occurs at 900°C, and for micro-particles it occurs in the temperature range 1150–1200°C. The alumina ceramics produced of alumina nanoparticles is shown to have higher flexural strength under three-point bending than the ceramics produced of micro-particles. The obtained results demonstrate that alumina particle size reduction stabilizes the formation of α-Al2O3 at lower temperatures, due to which the grain growth rate decreases and the flexural strength of monolithic oxide ceramics increases.  相似文献   

15.
Dynamic compression has been used to synthesize liquid metallic hydrogen at 140 GPa (1.4 million bar) and experimental data and theory predict Al2O3 might be a metallic glass at ∼ 300 GPa. The mechanism of metallization in both cases is probably a Mott-like transition. The strength of sapphire causes shock dissipation to be split differently in the strong solid and soft fluid. Once the 4.5-eV H-H and Al-O bonds are broken at sufficiently high pressures in liquid H2 and in sapphire (single-crystal Al2O3), electrons are delocalized, which leads to formation of energy bands in fluid H and probably in amorphous Al2O3. The high strength of sapphire causes shock dissipation to be absorbed primarily in entropy up to ∼400 GPa, which also causes the 300-K isotherm and Hugoniot to be virtually coincident in this pressure range. Above ∼400 GPa shock dissipation must go primarily into temperature, which is observed experimentally as a rapid increase in shock pressure above ∼400 GPa. The metallization of glassy Al2O3, if verified, is expected to be general in strong oxide insulators. Implications for Super Earths are discussed.  相似文献   

16.
We present the results of studying the luminescence properties of transparent ceramics Y3Al5O12:Yb obtained by the vacuum sintering and nanocrystalline technology. In the course of research, we measured the luminescence and luminescence excitation spectra, as well as the temperature and kinetic behavior of luminescence. Our results are analyzed in comparison with the characteristics of corresponding single crystals. We revealed that processes of generation and relaxation of electronic excitations that occur in ceramics, in particular, in the charge transfer state, are similar to processes occurring in crystals. The behavior of two charge-transfer luminescence bands at 340 and 490 nm is studied. In the range 300–600 nm, we revealed a broad emission band of radiation of other type, which is also observed in spectra of undoped ceramics. This broad band is attributed to F+ centers. Emission and excitation spectra of charge transfer luminescence at a maximum of the temperature dependence of 100 K are measured for the first time. We found that, upon excitation in the charge transfer band, luminescence in ceramics is more intense than in single crystals with similar concentrations of Yb and has a higher quenching temperature.  相似文献   

17.
It is shown that a nonequilibrium solid solution ZrO2(3Y, Al) with tetragonal structure is formed in systems based on ZrO2(3Y) with Al2O3 as a second component. A delay in the γ → α Al2O3 transformation and a reduction in the size of the coherently scattering domain of modifications are observed in systems based on Al2O3 with ZrO2(Y) as a second component.  相似文献   

18.
Al-Mo codoped Li7La3Zr2O12 ceramics with fine grain were prepared by sol-gel method. The influences of Al-Mo codoping on the structure, microstructure, and conductivity of Li7La3Zr2O12 were investigated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and impedance spectroscopy. The cubic phase Li7La3Zr2O12 has been stabilized by partial substitution of Al for Li and Mo for Zr. Li6.6-3yAlyLa3Zr1.8Mo0.2O12 (0?≤?y?≤?0.1) has been sintered at 1040–1060 °C for 3 h. The liquid sintering facilitated its densification. The relative density of the composition with x?=?0.075 was approximately 96.4%. Results indicated that the Al-Mo codoped LLZO synthesized by sol-gel method effectively lowered its sintering temperature, accelerated densification, and improved the ionic conductivity.  相似文献   

19.
As potential gate dielectric materials, pseudobinary oxide (TiO2)x(Al2O3)1-x (0.1≤x≤0.6) films (TAO) were deposited on Si (100) substrates by pulsed-laser deposition method and studied systematically via various measurements. By a special deposition process, including two separate steps, the TAO films were deposited in the form of two layers. The first layer was deposited at room temperature and the second layer was completed at the substrate temperature of 400 °C. Detailed data show that the properties of the TAO films are closely related to the ratio between TiO2 and Al2O3. The existence of the first layer deposited at room temperature can effectively restrain the formation of the interfacial layer. And according to the results of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy performed on the films, no other information belonging to the silicon oxide could be observed. For the (TiO2)0.4(Al2O3)0.6 film, the best result has been achieved among all samples and its dielectric constant is evaluated to be about 38. It is valuable for the amorphous TAO film as one of the promising dielectric materials for high-k gate dielectric applications. PACS 77.55.+f; 73.40.Qv; 81.15.Fg  相似文献   

20.
This article describes the ultraviolet (UV) protection of MgO and Al2O3 nanoparticles embedded electrospun polyacrylonitrile (PAN) nanofibrous mats. UV radiation is a harmful part of sunlight and prolonged exposure to it can cause serious skin damages. In this research, nanofibrous mats consisting of nanofibers with different diameters containing different amounts of MgO, Al2O3, MgO Plus, and Al2O3 Plus nanoparticles were produced, and their UV-protection was measured. The specific surface area of MgO, MgO Plus, Al2O3, and Al2O3 Plus nanoparticles was 230, 600, 275, and 550 m2/g, respectively. The mean diameter of electrospun PAN nanofibers embedded with metal oxide nanoparticles was in the range of 665–337 nm. The results showed that the UV-protection (shielding) capability of the mats strongly depends on fiber diameter; in fact a thin mat of nanofibers has a much stronger UV-protection in comparison to a thicker mat composed of regular fibers. UV transmission is reduced as a result of embedding MgO and Al2O3 nanoparticles in the electrospun PAN nanofibrous mats. MgO Plus and Al2O3 Plus show higher UV-protection than MgO and Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号