首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co-crystals are one of the most popular ways to modify the physicochemical properties of active pharmaceutical ingredients (API) without changing pharmacological activity through non-covalent interactions with one or more co-formers. A “green method” has recently prompted many researchers to develop solvent-free techniques or minimize solvents for arranging the eco-friendlier process of co-crystallization. Researchers have also been looking for less-risk co-formers that produce the desired API’s physicochemical properties. This review purposed to collect the report studies of amino acids as the safe co-former and explored their advantages. Structurally, amino acids are promising co-former candidates as they have functional groups that can form hydrogen bonds and increase stability through zwitterionic moieties, which support strong interactions. The co-crystals and deep eutectic solvent yielded from this natural compound have been proven to improve pharmaceutical performance. For example, l-glutamine could reduce the side effects of mesalamine through an acid-base stabilizing effect in the gastrointestinal fluid. In addition, some amino acids, especially l-proline, enhances API’s solubility and absorption in its natural deep eutectic solvent and co-crystals systems. Moreover, some ionic co-crystals of amino acids have also been designed to increase chiral resolution. Therefore, amino acids are safe potential co-formers, which are suitable for improving the physicochemical properties of API and prospective to be developed further in the dosage formula and solid-state syntheses.  相似文献   

2.
The increase in the production and consumption of pharmaceuticals increases their presence in the global environment, which may result in direct threats to living organisms. For this reason, there is a need for new methods to analyze drugs in environmental samples. Here, a new procedure for separating and determining selected drugs (diclofenac, ibuprofen, and carbamazepine) from bottom sediment and water samples was developed. Drugs were determined by ultra-high performance liquid chromatography coupled with an ultraviolet detector (UHPLC-UV). In this work, a universal and single-step sample treatment, based on supramolecular solvents (SUPRAS), was proposed to isolate selected anticonvulsants and nonsteroidal anti-inflammatory drugs (NSAIDs) from sediment samples. The following parameters were experimentally selected: composition of the supramolecular solvent (composition THF:H2O (v/v), amount of decanoic acid), volume of extractant, sample mass, extraction time, centrifugation time, and centrifugation speed. Finally, the developed procedure was validated. A Speedisk procedure was also developed to extract selected drugs from water samples. The recovery of analytes using the SUPRAS procedure was in the range of 88.8–115%, while the recoveries of the Speedisk solid-phase extraction procedure ranged from 81.0–106%. The effectiveness of the sorption of the tested drugs by sediment was also examined.  相似文献   

3.
A simple and sensitive method was developed for the determination of three nonsteroidal anti-inflammatory drugs (NSAIDs)—ibuprofen, naproxen and fenbufen in human plasma. The method involved in column liquid chromatographic separation and chemilumenescence (CL) detection based on the CL reaction of NSAIDs, potassium permanganate (KMnO4) and sodium sulfite (Na2SO3) in sulfuric acid (H2SO4) medium. The chromatographic separation was carried out using a reversed-phase C18 column, which allowed the selective determination of the three medicines in the complicated samples. The special features of the CL detector provided lower LOD for determination than that of existing chromatographic alternatives. The results indicated that the linear ranges were 0.01–10.0 μg mL?1 for ibuprofen, 0.001–1.0 μg mL?1 for naproxen, and 0.01–10.0 μg mL?1 for fenbufen. The limits of detection were 0.5 ng mL?1 for ibuprofen, 0.05 ng mL?1 for naproxen and 0.5 ng mL?1 for fenbufen (S/N = 3). All average recoveries were in the range of 90.0–102.3%. Finally, the method had been satisfactorily applied for the determination of ibuprofen, naproxen and fenbufen in human plasma samples.  相似文献   

4.
Xiong  Xunyu  Zhang  Qunzheng  Xiong  Fengmei  Tang  Yuhai 《Chromatographia》2008,67(11):929-934

A simple and sensitive method was developed for the determination of three nonsteroidal anti-inflammatory drugs (NSAIDs)—ibuprofen, naproxen and fenbufen in human plasma. The method involved in column liquid chromatographic separation and chemilumenescence (CL) detection based on the CL reaction of NSAIDs, potassium permanganate (KMnO4) and sodium sulfite (Na2SO3) in sulfuric acid (H2SO4) medium. The chromatographic separation was carried out using a reversed-phase C18 column, which allowed the selective determination of the three medicines in the complicated samples. The special features of the CL detector provided lower LOD for determination than that of existing chromatographic alternatives. The results indicated that the linear ranges were 0.01–10.0 μg mL−1 for ibuprofen, 0.001–1.0 μg mL−1 for naproxen, and 0.01–10.0 μg mL−1 for fenbufen. The limits of detection were 0.5 ng mL−1 for ibuprofen, 0.05 ng mL−1 for naproxen and 0.5 ng mL−1 for fenbufen (S/N = 3). All average recoveries were in the range of 90.0–102.3%. Finally, the method had been satisfactorily applied for the determination of ibuprofen, naproxen and fenbufen in human plasma samples.

  相似文献   

5.
介绍了食品中无机盐前处理和检测技术研究进展,主要阐述了包括火焰原子吸收光谱法、石墨炉原子吸收光谱法、电感耦合等离子体原子发射光谱法、原子荧光光谱法、X射线荧光光谱法及联用等技术在近年来的应用,并对以后的发展方向进行了展望。  相似文献   

6.
《Analytical letters》2012,45(10):1769-1782
The adulteration of traditional herbal medicines (THMs) with synthetic drugs is prevalent and represents a serious risk for public health. A rapid and novel reversed-phase high-performance liquid chromatography (HPLC) method was established and validated for the simultaneous determination of five nonsteroidal anti-inflammatory drugs (NSAIDs) and two glucocorticoids in THMs for rheumatoid treatment. Glipizide was used as the internal standard (IS). The separation was completed on a C18 column with a mobile phase consisting of methanol and a buffer solution containing 10 mM ammonium acetate and 0.1% formic acid with a gradient elution. All calibration curves showed good linear regression (r 2 > 0.9996), and the recoveries of the seven analytes were in the range of 96.94%–105.37%. A liquid chromatography-mass spectrometry (LC-MS) method was developed to confirm the identity of the adulterants. The proposed method was applied to identify and determine the five NSAIDs and two glucocorticoids in THMs for rheumatism.  相似文献   

7.
In an effort to combine the anti-proliferative effect of CUR-BF2 and CUR compounds with anti-inflammatory benefits of non-steroidal anti-inflammatory drugs (NSAIDs), a library of the bis- and mono-NSAID/CUR-BF2 and NSAID/CUR conjugates were synthesized by coupling flufenamic acid, flurbiprofen, naproxen, indomethacin, and ibuprofen to diversely substituted hydroxy-benzaldehydes via an ester linkage, and by subsequent reaction with acetylacetone-BF2 to form the bis- and the mono-NSAID/CUR-BF2 adducts. Since conversion to NSAID/CUR by the previously developed decomplexation protocol showed limited success, a set of NSAID/CUR conjugates were independently prepared by directly coupling the NSAIDs with parent curcumin. The bis-NSAID/CUR-BF2 and bis-NSAID-CUR hybrids exhibited low cytotoxicity in NCI-60 assay, and in independent cell viability assay on colorectal cancer (CRC) cells (HCT116, HT29, DLD-1, RKO, SW837, CaCo2) and in normal CR cells (CCD841CoN). By contrast, the mono-naproxin and mono-flurbiprofen CUR-BF2 adducts exhibited remarkable anti-proliferative and apoptopic activity in NCI-60 assay most notably against HCT-116 (colon), OVCAR-3 (ovarian), and ACHN (renal) cells. Computational molecular docking calculations showed favorable binding energies to HER2, VEGFR2, BRAF, and Bcl-2 as well as to COX-1 and COX-2, which in several cases exceeded known inhibitors. The main interactions between the ligands and the proteins were hydrophobic, although several hydrogen bonds were also observed. A sub-set of six compounds that had exhibited little or no cytotoxicity were tested for their anti-inflammatory response with THP-1 human macrophages in comparison to parent NSAIDs or parent curcumin.  相似文献   

8.
Rechargeable magnesium ion batteries (MIBs) have attracted increasing interest due to abundant reserves, high theoretical specific capacities and safety. However, the incompatibility between Mg metal and conventional electrolytes, among the most serious challenges, restrains their development. Replacing Mg metal with alloy-type anodes offers an effective strategy to circumvent the surface passivation issue of Mg metal in conventional electrolytes. Among them, Bi has the most potential in Mg storage owing to its unique characteristics. Herein, the advantages/challenges and progress of Bi-based anodes in MIBs are summarized. The theoretical evaluations, battery configurations, electrode designs, electrochemical properties as well as Mg storage mechanisms are summarized and discussed. Moreover, the key issues and some views on the future development of Bi-based anodes in MIBs are provided.  相似文献   

9.
The drug delivery systems that are the object of this article take the form of a hydrophilic matrix (collagen or crosslinked collagen) containing a drug. These devices can be used as The model active agents, were chosen from the range of local anaesthetics (lidocaine hydrochloride), anti-inflammatory (diclofenac sodium salt) and antioxydant (caffeic acid). Whatever the drug affinity for water, in the first time of the experiments, the release appears to be systematically delayed when the matrix is crosslinked. For lidocaine hydrochloride based systems, as the amount of drug increases in the matrix, the high gap concentration between the matrix and the buffer solution promote the diffusion and a Fickian behavior is observed on the release curves. Depending on the chemical nature of the drug and its solubility, several interactions between the drug and the collagen matrix can be considered. A new drug delivery system containing caffeic acid as the anti-inflammatory and antioxydant molecule could be tested. This new system was able to release 95% of the drug in 5 h and the global release rate depends on the initial drug concentration in the device.  相似文献   

10.
We report on the hyphenation of the modern flow techniques Lab-In-Syringe and Lab-On-Valve for automated sample preparation coupled online with high-performance liquid chromatography. Adopting the bead injection concept on the Lab-On-Valve platform, the on-demand, renewable, solid-phase extraction of five nonsteroidal anti-inflammatory drugs, namely ketoprofen, naproxen, flurbiprofen, diclofenac, and ibuprofen, was carried out as a proof-of-concept. In-syringe mixing of the sample with buffer and standards allowed straightforward pre-load sample modification for the preconcentration of large sample volumes. Packing of ca. 4.4 mg microSPE columns from Oasis HLB® sorbent slurry was performed for each sample analysis using a simple microcolumn adapted to the Lab-On-Valve manifold to achieve low backpressure during loading. Eluted analytes were injected into online coupled HPLC with subsequent separation on a Symmetry C18 column in isocratic mode. The optimized method was highly reproducible, with RSD values of 3.2% to 7.6% on 20 µg L−1 level. Linearity was confirmed up to 200 µg L−1 and LOD values were between 0.06 and 1.98 µg L−1. Recovery factors between 91 and 109% were obtained in the analysis of spiked surface water samples.  相似文献   

11.
万灵子  王晗 《化学通报》2019,82(11):963-971
环丙基的化学结构不同于直链脂肪烃和其他多元脂肪环,在药物分子的设计中经常被使用,具有增强药物的药效、增强代谢稳定性、降低脱靶作用、增强对受体的亲和力、限制多肽的水解作用、增加血脑屏障渗透率、降低血浆清除率以及改善药物的解离度(pK_a)等功效。含有环丙基结构的药物被开发用于治疗呼吸系统疾病、精神障碍类疾病、内分泌和代谢系统疾病、感染性疾病、神经系统疾病、心脑血管疾病以及肿瘤等。本文将对含有环丙基结构药物的研究进展进行综述。  相似文献   

12.
Vulvar squamous cell carcinoma (VSCC) is a rare malignancy with a relatively good prognosis. However, the prognosis remains poor for elderly patients and those with a significant depth of tumor invasion; thus, novel treatment modalities are needed. The aim of this study was to analyze the impact of cannabidiol (CBD) and its combination with NSAIDs, diclofenac (DIC) and ibuprofen (IBU) on VSCC cells. In this regard, the MTT test was applied for cytotoxicity analysis. Moreover, the influence of CBD, DIC and IBU, as well as their combinations, on apoptosis and cell cycle distribution were analyzed by flow cytometry. The mechanisms of action of the analyzed compounds, including their impact on NF-κB signaling, p53 and COX-2 expression were evaluated using Western blot. This study shows that CBD and its combinations with NSAIDs are cytotoxic to A431 cells, but they also reduce, in a dose-dependent manner, the viability of immortalized keratinocyte HaCaT cells, and human umbilical vein cell line, EA.hy926. Moreover, the compounds and their combinations induced apoptosis, diminished the NF-κB signaling activation and reduced COX-2 expression. We conclude that CBD and its combination with DIC or IBU are promising candidates for the adjuvant treatment of high-risk VSCC patients. However, their impact on non-cancerous cells requires careful evaluation.  相似文献   

13.
二氧化碳(CO2)电化学还原利用CO2生产低碳燃料,能够实现可再生能源存储同时降低温室气体排放对环境的负面影响,因而成为了近年里一个甚受瞩目的研究与开发热点. 尽管以往科学家关于催化剂活性、产物选择性以及反应机理的基础研究已做了广泛的报道,但对催化稳定性和电化学反应器系统的设计及实用性方面还未给予充分重视. 本文针对影响低温水溶液中二氧化碳电化学还原技术实用化的上述两个重要因素, 从技术应用需求角度出发,在概述发展现状基础上,总结归纳了主要存在的技术挑战,对未来研究方向提出了建议性对策.  相似文献   

14.
Industrial-based application of supercritical CO2 (SCCO2) has emerged as a promising technology in numerous scientific fields due to offering brilliant advantages, such as simplicity of application, eco-friendliness, and high performance. Loxoprofen sodium (chemical formula C15H18O3) is known as an efficient nonsteroidal anti-inflammatory drug (NSAID), which has been long propounded as an effective alleviator for various painful disorders like musculoskeletal conditions. Although experimental research plays an important role in obtaining drug solubility in SCCO2, the emergence of operational disadvantages such as high cost and long-time process duration has motivated the researchers to develop mathematical models based on artificial intelligence (AI) to predict this important parameter. Three distinct models have been used on the data in this work, all of which were based on decision trees: K-nearest neighbors (KNN), NU support vector machine (NU-SVR), and Gaussian process regression (GPR). The data set has two input characteristics, P (pressure) and T (temperature), and a single output, Y = solubility. After implementing and fine-tuning to the hyperparameters of these ensemble models, their performance has been evaluated using a variety of measures. The R-squared scores of all three models are greater than 0.9, however, the RMSE error rates are 1.879 × 10−4, 7.814 × 10−5, and 1.664 × 10−4 for the KNN, NU-SVR, and GPR models, respectively. MAE metrics of 1.116 × 10−4, 6.197 × 10−5, and 8.777 × 10−5errors were also discovered for the KNN, NU-SVR, and GPR models, respectively. A study was also carried out to determine the best quantity of solubility, which can be referred to as the (x1 = 40.0, x2 = 338.0, Y = 1.27 × 10−3) vector.  相似文献   

15.
Oxidative stress and inflammation are two conditions that coexist in many multifactorial diseases such as atherosclerosis and neurodegeneration. Thus, the design of multifunctional compounds that can concurrently tackle two or more therapeutic targets is an appealing approach. In this study, the basic NSAID structure was fused with the antioxidant moieties 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHB), its reduced alcohol 3,5-di-tert-butyl- 4-hydroxybenzyl alcohol (BHBA), or 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), a hydrophilic analogue of α-tocopherol. Machine learning algorithms were utilized to validate the potential dual effect (anti-inflammatory and antioxidant) of the designed analogues. Derivatives 1–17 were synthesized by known esterification methods, with good to excellent yields, and were pharmacologically evaluated both in vitro and in vivo for their antioxidant and anti-inflammatory activity, whereas selected compounds were also tested in an in vivo hyperlipidemia protocol. Furthermore, the activity/binding affinity of the new compounds for lipoxygenase-3 (LOX-3) was studied not only in vitro but also via molecular docking simulations. Experimental results demonstrated that the antioxidant and anti-inflammatory activities of the new fused molecules were increased compared to the parent molecules, while molecular docking simulations validated the improved activity and revealed the binding mode of the most potent inhibitors. The purpose of their design was justified by providing a potentially safer and more efficient therapeutic approach for multifactorial diseases.  相似文献   

16.
We report the design and synthesis of a series of new 5-chloropyridinyl esters of salicylic acid, ibuprofen, indomethacin, and related aromatic carboxylic acids for evaluation against SARS-CoV-2 3CL protease enzyme. These ester derivatives were synthesized using EDC in the presence of DMAP to provide various esters in good to excellent yields. Compounds are stable and purified by silica gel chromatography and characterized using 1H-NMR, 13C-NMR, and mass spectral analysis. These synthetic derivatives were evaluated in our in vitro SARS-CoV-2 3CLpro inhibition assay using authentic SARS-CoV-2 3CLpro enzyme. Compounds were also evaluated in our in vitro antiviral assay using quantitative VeroE6 cell-based assay with RNAqPCR. A number of compounds exhibited potent SARS-CoV-2 3CLpro inhibitory activity and antiviral activity. Compound 9a was the most potent inhibitor, with an enzyme IC50 value of 160 nM. Compound 13b exhibited an enzyme IC50 value of 4.9 µM. However, it exhibited a potent antiviral EC50 value of 24 µM in VeroE6 cells. Remdesivir, an RdRp inhibitor, exhibited an antiviral EC50 value of 2.4 µM in the same assay. We assessed the mode of inhibition using mass spectral analysis which suggested the formation of a covalent bond with the enzyme. To obtain molecular insight, we have created a model of compound 9a bound to SARS-CoV-2 3CLpro in the active site.  相似文献   

17.
乳制品中兽药多种类残留的液相色谱-质谱分析研究进展   总被引:1,自引:0,他引:1  
近年来,乳制品安全问题备受关注,兽药残留作为化学危害的一个重要部分使得针对其检测技术的研究一直是乳制品安全分析的热点领域,液相色谱-质谱技术因在灵敏度和选择性方面的优势已成为目前兽药残留分析的主流技术。基于液相色谱-质谱技术的兽药残留分析趋势已逐渐在向多种类、多组分发展,但由于兽药各种类之间在理化性质、残留状态、限量要求等方面差异较大,导致在样品前处理和仪器分析环节存在一定的技术困难。为进一步了解该技术领域的研究进展,该文从样品前处理、色谱-质谱检测和基质效应等方面对近几年采用液相色谱-质谱技术测定乳制品中兽药多种类残留的国内外文献进行了综述。  相似文献   

18.
A magnetic separation method based on the use of magnetic silica as the stationary phase in sequential injection chromatography was used for simultaneous determination of nonsteroidal anti-inflammatory drugs (acetaminophen, naproxen, diclofenac, and ibuprofen) in tablets. The method is based on a thin layer paramagnetic stationary phase retained on the inner wall of a mini-column through the action of an external magnetic field. The influence of the variables involved was evaluated and the optimal conditions were found to be: a methyl-silica magnetic adsorbent was used as the stationary phase, the mobile phase was methanol-water (60:40, v/v), pH 2.5 adjusted with 98% phosphoric acid, a flow rate 0.60 ml min?1, and UV detection at 225 nm. Under these conditions, the linear range of the calibration curve ranged from 3–6 mg L?1 to 100 mg L?1 with limits of detection ranging between 1 to 2 mg L?1. The proposed method was validated by comparing the results obtained against those provided by high performance liquid chromatography; no significant differences were seen.  相似文献   

19.
对矿冶行业中阴离子分析与检测技术进行了全面详细的介绍,分析了矿冶行业对先进的阴离子检测技术的需求,总结了主要的前沿阴离子检测技术。着重论述了具有广泛应用前景的离子色谱法,介绍了在应用此项技术时,如何进行样品的预处理,如何去除各种杂质的干扰等,最后,对在该行业阴离子检测的发展趋势进行了展望。  相似文献   

20.
The nonsteroidal anti-inflammatory drugs (NSAID), naproxen, sulindac and indomethacin, were shown to donate electrons to nitro blue tetrazolium (NBT) when irradiated with UV light in deoxygenated aqueous buffer solution (pH 7.4, 30°C). The reaction was monitored spec-trophotometrically by the appearance of the diformazan reduction product from NBT. The electron transfer process facilitates the decomposition of the drugs. Naproxen in the presence of NBT is photodegraded principally to the alcohol (2-[1-hydroxyethyl]-6-methoxynaphthalene) at a rate approximately 20-fold faster than when irradiated alone in deoxygenated conditions. The photoproduct from naproxen also participates in the electron transfer to NBT but at a much slower rate than naproxen. Irradiation of sulindac or indomethacin in the presence of NBT caused the slow photoreduction of NBT to diformazan. In the absence of NBT, indomethacin and sulindac are essentially unreactive when irradiated in aqueous solution. The ability of a number of NSAID to act as electron donors in their ground state was studied by observing their oxidation by potassium peroxodisulfate in pH 7.0 phosphate buffer at 50°C. The HPLC analysis of the drug remaining showed that the 2-arylpropionic acid NSAID (naproxen, ibuprofen, ketoprofen and suprofen) reacted at a rate equivalent to the thermal decomposition of peroxodisulfate. The major products were the same as detected in the photooxidation of these drugs, resulting from decarboxylation and oxygen addition but also included a dimeric compound. On the other hand, the NSAID that do not contain the propionic acid substituent all reacted more slowly with peroxodisulfate, enabling specific reaction rate constants to be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号