首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For convection-diffusion problems with exponential layers, optimal error estimates for linear finite elements on Shishkin-type meshes are known. We present the first optimal convergence result in an energy norm for a Bakhvalov-type mesh.  相似文献   

2.
In this article, we studied a discontinuous Galerkin finite element method for convection-diffusion-reaction problems with singular perturbation. Our approach is highly flexible by allowing the use of discontinuous approximating function on polytopal mesh without imposing extra conditions on the convection coefficient. A priori error estimate is devised in a suitable energy norm on general polytopal mesh. Numerical examples are provided.  相似文献   

3.
In this paper, we present a two-grid finite element method for the Allen-Cahn equation with the logarithmic potential. This method consists of two steps. In the first step, based on a fully implicit finite element method, the Allen-Cahn equation is solved on a coarse grid with mesh size H. In the second step, a linearized system whose nonlinear term is replaced by the value of the first step is solved on a fine grid with mesh size h. We give the energy stabilities of the traditional finite element method and the two-grid finite element method. The optimal convergence order of the two-grid finite element method in H1 norm is achieved when the mesh sizes satisfy h = O(H2). Numerical examples are given to demonstrate the validity of the proposed scheme. The results show that the two-grid method can save the CPU time while keeping the same convergence rate.  相似文献   

4.
We consider a singularly perturbed elliptic problem with two small parameters posed on the unit square. Based on a decomposition of the solution, we prove uniform convergence of a finite element method in an energy norm. The method uses piecewise bilinear functions on a layer-adapted Shishkin mesh. Numerical results confirm our theoretical analysis. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
This work gives the high accuracy analysis of a rectangular biharmonic element in arbitrarily high-dimensional cases. Given an n-rectangle, we construct the nonconforming finite element and show its explicit standard basis representation. We prove that, if the n-rectangular mesh is uniform, this element can achieve a second order convergence rate in energy norm when applied to biharmonic problems. Numerical examples for n = 3 are also presented.  相似文献   

6.
We study convergence properties of a numerical method for convection-diffusion problems with characteristic layers on a layer-adapted mesh. The method couples standard Galerkin with an h-version of the nonsymmetric discontinuous Galerkin finite element method with bilinear elements. In an associated norm, we derive the error estimate as well as the supercloseness result that are uniform in the perturbation parameter. Applying a post-processing operator for the discontinuous Galerkin method, we construct a new numerical solution with enhanced convergence properties.  相似文献   

7.
Ma  Guanglong  Stynes  Martin 《Numerical Algorithms》2020,83(2):741-765

The direct discontinuous Galerkin (DDG) finite element method, using piecewise polynomials of degree k ≥ 1 on a Shishkin mesh, is applied to convection-dominated singularly perturbed two-point boundary value problems. Consistency, stability and convergence of order k (up to a logarithmic factor) are proved in an energy-type norm appropriate to the method and problem. The results are robust, i.e., they hold uniformly for all values of the singular perturbation parameter. Numerical experiments confirm the theoretical convergence rate.

  相似文献   

8.
In this paper, we propose a multilevel preconditioner for the Crouzeix-Raviart finite element approximation of second-order elliptic partial differential equations with discontinuous coefficients. Since the finite element spaces are nonnested, weighted intergrid transfer operators, which are stable under the weighted L2 norm, are introduced to exchange information between different meshes. By analyzing the eigenvalue distribution of the preconditioned system, we prove that except a few small eigenvalues, all the other eigenvalues are bounded below and above nearly uniformly with respect to the jump and the mesh size. As a result, we get that the convergence rate of the preconditioned conjugate gradient method is quasi-uniform with respect to the jump and the mesh size. Numerical experiments are presented to confirm our theoretical analysis.  相似文献   

9.
A finite element method of any order is applied on a Bakhvalov-type mesh to solve a singularly perturbed convection–diffusion equation in 2D, whose solution exhibits exponential boundary layers. A uniform convergence of (almost) optimal order is proved by means of a carefully defined interpolant.  相似文献   

10.
Interior estimates are proved in the L norm for stable finite element discretizations of the Stokes equations on translation invariant meshes. These estimates yield information about the quality of the finite element solution in subdomains a positive distance from the boundary. While they have been established for second-order elliptic problems, these interior, or local, maximum norm estimates for the Stokes equations are new. By applying finite differenciation methods on a translation invariant mesh, we obtain optimal convergence rates in the mesh size h in the maximum norm. These results can be used for analyzing superconvergence in finite element methods for the Stokes equations.  相似文献   

11.
A singularly perturbed one-dimensional convection-diffusion problem is solved numerically by the finite element method based on higher order polynomials. Numerical solutions are obtained using S-type meshes with special emphasis on meshes which are graded (based on a mesh generating function) in the fine mesh region. Error estimates in the ε-weighted energy norm are proved. We derive an 'optimal' mesh generating function in order to minimize the constant in the error estimate. Two layer-adapted meshes defined by a recursive formulae in the fine mesh region are also considered and a new technique for proving error estimates for these meshes is presented. The aim of the paper is to emphasize the importance of using optimal meshes for higher order finite element methods. Numerical experiments support all theoretical results.  相似文献   

12.
In this paper we consider a singularly perturbed elliptic model problem with two small parameters posed on the unit square. The problem is solved numerically by the finite element method using piecewise linear or bilinear elements on a layer-adapted Shishkin mesh. We prove that method with bilinear elements is uniformly convergent in an energy norm. Numerical results confirm our theoretical analysis.  相似文献   

13.
In this paper, we consider a two-grid method for resolving the nonlinearity in finite element approximations of the equilibrium Navier–Stokes equations. We prove the convergence rate of the approximation obtained by this method. The two-grid method involves solving one small, nonlinear coarse mesh system and two linear problems on the fine mesh which have the same stiffness matrix with only different right-hand side. The algorithm we study produces an approximate solution with the optimal asymptotic in h and accuracy for any Reynolds number. Numerical example is given to show the convergence of the method.  相似文献   

14.
We present a finite difference scheme for a class of linear singularly perturbed boundary value problems with two small parameters. The problem is discretized using a Bakhvalov-type mesh. It is proved under certain conditions that this scheme is fourth-order accurate and that its error does not increase when the perturbation parameter tends to zero. Numerical examples are presented which demonstrate computationally the fourth order of the method.  相似文献   

15.
A simple and accurate four-node quadrilateral finite element based on the Mindlin plate theory and Kirchhoff constraints is presented for general thin plate bending applications. The derivation of the element stiffness properties is straightforward, starting with a specified eight-node interpolation; usual discrete Kirchhoff (DK) constraints are employed to constrain out the four midside nodes of the element. The present resulting DK element passes patch tests with elements of arbitrary and even highly distorted mesh types. Numerical studies of the element convergence behaviours are undertaken for various plate bending problems so far investigated. It is indicated from comparative examples that fairly good convergence characteristics have been achieved.  相似文献   

16.
In this article, we introduce a coupled approach of local discontinuous Galerkin and standard finite element method for solving convection diffusion problems. The whole domain is divided into two disjoint subdomains. The discontinuous Galerkin method is adopted in the subdomain where the solution varies rapidly, while the standard finite element method is used in the other subdomain due to its lower computational cost. The stability and a priori error estimate are established. We prove that the coupled method has O((ε1 / 2 + h 1 / 2 )h k ) convergence rate in an associated norm, where ε is the diffusion coefficient, h is the mesh size and k is the degree of polynomial. The numerical results verify our theoretical results. Moreover, 2k-order superconvergence of the numerical traces at the nodes, and the optimal convergence of the errors under L 2 norm are observed numerically on the uniform mesh. The numerical results also indicate that the coupled method has the same convergence order and almost the same errors as the purely LDG method.  相似文献   

17.
ABSTRACT

In this paper, a stabilized space-time finite element method for solving linear parabolic evolution problems is analyzed. The proposed method is developed on a base of a space-time variational setting, that helps on the simultaneous and unified discretization in space and in time by finite element techniques. Stabilization terms are constructed by means of classical bubble spaces. Stability of the discrete problem with respect to an associated mesh dependent norm is proved, and a priori discretization error estimates are presented. Numerical examples confirm the theoretical estimates.  相似文献   

18.
Motivated by problems arising in semiconductor-device modeling, this paper is concerned with a singularly perturbed semilinear reaction-diffusion problem with a boundary turning point. It is proved that the problem has a unique solution with two boundary layers. Based on the estimates of the derivatives of the solution, a numerical method is proposed which uses the classical finite-difference discretization on a Bakhvalov-type mesh. Second-order accuracy, uniform with respect to the perturbation parameter, is proved in the maximum norm. Numerical results are presented in support of the theoretical ones.  相似文献   

19.
This paper presents a modified graded mesh for singularly perturbed two-parameter problems. The mesh is generated recursively using Newton's algorithm and some implicitly defined function. The problem is solved numerically using the finite element method based on higher order polynomials of degree p≥1. We prove parameter uniform convergence of optimal order in ε-weighted energy norm. A test example is taken to compare the proposed graded mesh with others found in the literature.  相似文献   

20.
Interior error estimates are obtained for a low order finite element introduced by Arnold and Falk for the Reissner–Mindlin plates. It is proved that the approximation error of the finite element solution in the interior domain is bounded above by two parts: one measures the local approximability of the exact solution by the finite element space and the other the global approximability of the finite element method. As an application, we show that for the soft simply supported plate, the Arnold–Falk element still achieves an almost optimal convergence rate in the energy norm away from the boundary layer, even though optimal order convergence cannot hold globally due to the boundary layer. Numerical results are given which support our conclusion. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号