首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we study an initial-boundary-value problem of a system of hyperbolic, partial-differential equations that models blood flow in a vessel. The one-spatial-dimensional model assumes that blood flow in the vessel is an incompressible, homogeneous, Newtonian fluid which has a small Womersley number. Boundary conditions with either the pressure or the flow rate at each end of the vessel are considered, and the existence of the global solution is obtained using a form of Glimm's finite-difference scheme.  相似文献   

2.
In this paper, we present a mathematical analysis of the quasilinear effects arising in a hyperbolic system of partial differential equations modelling blood flow through large compliant vessels. The equations are derived using asymptotic reduction of the incompressible Navier–Stokes equations in narrow, long channels. To guarantee strict hyperbolicity we first derive the estimates on the initial and boundary data which imply strict hyperbolicity in the region of smooth flow. We then prove a general theorem which provides conditions under which an initial–boundary value problem for a quasilinear hyperbolic system admits a smooth solution. Using this result we show that pulsatile flow boundary data always give rise to shock formation (high gradients in the velocity and inner vessel radius). We estimate the time and the location of the first shock formation and show that in a healthy individual, shocks form well outside the physiologically interesting region (2.8m downstream from the inlet boundary). In the end we present a study of the influence of vessel tapering on shock formation. We obtain a surprising result: vessel tapering postpones shock formation. We provide an explanation for why this is the case. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
We present an iterative technique to construct stable solutions for an angiogenesis model set in an annular region. Branching, anastomosis and extension of blood vessel tips is described by an integrodifferential kinetic equation of Fokker–Planck type supplemented with nonlocal boundary conditions and coupled to a diffusion problem with Neumann boundary conditions through the force field created by the tumor induced angiogenic factor and the flux of vessel tips. Convergence proofs exploit balance equations, estimates of velocity decay and compactness results for kinetic operators, combined with gradient estimates of heat kernels for Neumann problems in non convex domains.  相似文献   

4.
The two‐phase flow of a flocculated suspension in a closed settling vessel with inclined walls is investigated within a consistent extension of the kinematic wave theory to sedimentation processes with compression. Wall boundary conditions are used to spatially derive one‐dimensional field equations for planar flows and flows which are symmetric with respect to the vertical axis. We analyse the special cases of a conical vessel and a roof‐shaped vessel. The case of a small initial time and a large time for the final consolidation state leads to explicit expressions for the flow fields, which constitute an important test of the theory. The resulting initial‐boundary value problems are well posed and can be solved numerically by a simple adaptation of one of the newly developed numerical schemes for strongly degenerate convection‐diffusion problems. However, from a physical point of view, both the analytical and numerical results reveal a deficiency of the general field equations. In particular, the strongly reduced form of the linear momentum balance turns out to be an oversimplification. Included in our discussion as a special case are the Kynch theory and the well‐known analyses of sedimentation in vessels with inclined walls within the framework of kinematic waves, which exhibit the same shortcomings. In order to formulate consistent boundary conditions for both phases in a closed vessel and in order to predict boundary layers in the presence of inclined walls, viscosity terms should be taken into account. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
血液动力学问题是生物力学心血管系统中的重要研究课题.血管内斑块处,血管截面和血管壁的材质发生变化,对血液流动产生重要影响.血液流动中基本波及其相互作用对探究血液流动的规律、生理学意义及与疾病的关系有着重要的意义.本文研究血液动力学血液流动简化数学模型的基本波的相互作用.血管流模型是3×3非严格双曲型方程组.构造性地得到了初值为三段常状态时,血管流问题的解,即解决了激波与驻波的相互作用问题.特别地,给出四种后前激波与驻波的相互作用的结果.  相似文献   

6.
In this paper, the blood flow problem is considered in a blood vessel, and a coupling system of Navier–Stokes equations and linear elastic equations, Navier–Lame equations, in a cylinder with cylindrical elastic shell is given as the governing equations of the problem. We provide two finite element models to simulating the three-dimensional Navier–Stokes equations in the cylinder while the asymptotic expansion method is used to solving the linearly elastic shell equations. Specifically, in order to discrete the Navier–Stokes equations, the dimensional splitting strategy is constructed under the cylinder coordinate system. The spectral method is adopted along the rotation direction while the finite element method is used along the other directions. By using the above strategy, we get a series of two-dimensional-three-components (2D-3C) fluid problems. By introduce the S-coordinate system in E3 and employ the thickness of blood vessel wall as the expanding parameter, the asymptotic expansion method can be established to approximate the solution of the 3D elastic problem. The interface contact conditions can be treated exactly based on the knowledge of tensor analysis. Finally, numerical test shows that our method is reasonable.  相似文献   

7.
L. Formaggia  A. Moura  F. Nobile 《PAMM》2006,6(1):27-30
Three-dimensional (3D) simulations of blood flow in medium to large vessels are now a common practice. These models consist of the 3D Navier-Stokes equations for incompressible Newtonian fluids coupled with a model for the vessel wall structure. However, it is still computationally unaffordable to simulate very large sections, let alone the whole, of the human circulatory system with fully 3D fluid-structure interaction models. Thus truncated 3D regions have to be considered. Reduced models, one-dimensional (1D) or zero-dimensional (0D), can be used to approximate the remaining parts of the cardiovascular system at a low computational cost. These models have a lower level of accuracy, since they describe the evolution of averaged quantities, nevertheless they provide useful information which can be fed to the more complex model. More precisely, the 1D models describe the wave propagation nature of blood flow and coupled with the 3D models can act also as absorbing boundary conditions. We consider in this work the coupling of a 3D fluid-structure interaction model with a 1D hyperbolic model. We study the stability of the coupling and present some numerical results. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Abstract

We consider blood flow in a vessel with an attached capillary system. The latter is modelled with the help of a corresponding fractal graph whose edges are supplied with ordinary differential equations obtained by the dimension-reduction procedure from a three-dimensional model of blood flow in thin vessels. The Kirchhoff transmission conditions must be satisfied at each interior vertex. The geometry and physical parameters of this system are described by a finite number of scaling factors which allow the system to have self-reproducing solutions. Namely, these solutions are determined by the factors’ values on a certain fragment of the fractal graph and are extended to its rest part by virtue of these scaling factors. The main result is the existence and uniqueness of self-reproducing solutions, whose dependence on the scaling factors of the fractal graph is also studied. As a corollary we obtain a relation between the pressure and flux at the junction, where the capillary system is attached to the blood vessel. This relation leads to the Robin boundary condition at the junction and this condition allows us to solve the problem for the flow in the blood vessel without solving it for the attached capillary system.  相似文献   

9.
The mathematical modelling and numerical simulation of the human cardiovascular system is playing nowadays an important role in the comprehension of the genesis and development of cardiovascular diseases. In this paper we deal with two problems of 3D modelling and simulation in this field, which are very often neglected in the literature. On the one hand blood flow in arteries is characterized by travelling pressure waves due to the interaction of blood with the vessel wall. On the other hand, blood exhibits non-Newtonian properties, like shear-thinning, viscoelasticity and thixotropy. The present work is concerned with the coupling of a generalized Newtonian fluid, accounting for the shear-thinning behaviour of blood, with an elastic structure describing the vessel wall, to capture the pulse wave due to the interaction between blood and the vessel wall. We provide an energy estimate for the coupling and compare the numerical results with those obtained with an equivalent fluid-structure interaction model using a Newtonian fluid.  相似文献   

10.
V. Prokop  K. Kozel 《PAMM》2008,8(1):10637-10638
This paper deals with a numerical solution of laminar incompressible steady flows of Newtonian and non–Newtonian fluids through bypass of a restricted vessel. Blood flow is considered to be Newtonian in the case of vessels of large diameters as aorta. On the other hand, with decreasing diameter of a vessel the non–Newtonian behavior of blood can play a significant role. One could describe these problems using Navier–Stokes equations and continuity equation as a model. In the case of Newtonian fluids one considers constant viscosity compared to non–Newtonian fluids where viscosity varies and can depend on the tensor of deformation. In order to find numerical solution, the system of equations is completed using an artificial compressibility method. The space derivatives are discretised using a cell centered finite volume method and arising system of ordinary differential equations is solved using an explicit multistage Runge–Kutta method with given steady boundary conditions. The steady solution is achieved for time t→∞ and steady boundary conditions. The results can be used in the field of cardiovascular research. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We present a one-dimensional model describing the blood flow through a moderately curved and elastic blood vessel. We use an existing two dimensional model of the vessel wall along with Navier−Stokes equations to model the flow through the channel while taking factors, namely, surrounding muscle tissue and presence of external forces other than gravity into account. Our model is obtained via a dimension reduction procedure based on the assumption of thinness of the vessel relative to its length. Results of numerical simulations are presented to highlight the influence of different factors on the blood flow.  相似文献   

12.
We consider the fluid-structure interaction problem arising in haemodynamic applications. The finite elasticity equations for the vessel are written in Lagrangian form, while the Navier-Stokes equations for the blood in Arbitrary Lagrangian Eulerian form. The resulting three fields problem (fluid/ structure/ fluid domain) is formalized via the introduction of three Lagrange multipliers and consistently discretized by p-th order backward differentiation formulae (BDFp). We focus on partitioned algorithms for its numerical solution, which consist in the successive solution of the three subproblems. We review several strategies that all rely on the exchange of Robin interface conditions and review their performances reported recently in the literature. We also analyze the stability of explicit partitioned procedures and convergence of iterative implicit partitioned procedures on a simple linear FSI problem for a general BDFp temporal discretizations.  相似文献   

13.
采用计算流体力学方法分别对6种狭窄率的颈动脉内非Newton瞬态血流进行流固耦合数值分析.研究了狭窄率对颈动脉内血流动力学分布的影响,以探索狭窄率与颈动脉内粥样斑块形成的关系.结果表明,狭窄率不同的颈动脉内血流动力学分布特性明显不同,与0.05,0.1,0.2,0.3和04这5种狭窄率的颈动脉内血流动力学分布特性相比,狭窄率为0.5的颈动脉内血流动力学分布独特,狭窄部位附近区域存在面积较大的低速涡流区;复杂血流作用下,该区域分布低壁面压力,异常壁面切应力,较大管壁形变量和von Mises应力;血流速度低使血液中脂质、纤维蛋白等大分子易沉积,低壁面压力引起的明显“负压”效应引发脑部供血障碍,异常壁面切应力作用下粥样斑块易破裂与脱落,并堵塞脑血管,较大的von Mises应力易引起应力集中,导致血管破裂,为脑卒中发生提供有利条件.因此,狭窄率越大对颈动脉内血流动力学分布的影响越显著,促进颈动脉粥样斑块形成与发展,并引发缺血性脑卒中.  相似文献   

14.
本文所提出的计算方法,其基础是对血液流动微连续统模型作了一种边界条件的改进,设想了血管内壁面上血细胞速度可能不为零.对于由Eringen所提出的关于刚性圆管中稳态血液流动方程,假设了血管内壁面上血细胞的旋转速度,及血细胞旋转速度分布曲线在管轴处的斜率,导出了计算血管中速度分布曲线的方法,并将按此理论计算而得的曲线与Bugliarello和Hayden在实验中测得的分布曲线及由Turk,Sylvester和Ariman所提出的计算公式的结果相比较.  相似文献   

15.
静脉系统是心血管系统的重要组成部分.脉搏波在血液流动中有着突出的重要性.本文主要研究静脉血流动力学模型基本波的相互作用.血流动力学模型是2×2严格双曲型方程组,其基本波包括疏散波和激波,属于血液流动中的脉搏波.基本波相互作用后血管截面面积和血流速度发生相应的变化.  相似文献   

16.
A continuum theory is introduced for viscous fluids carrying dense suspensions (such as blood) or emulsions of arbitrary shape and inertia. Suspended particles possess microinertia that make the mixture an anisotropic fluid whose viscosity changes with motion and orientation of suspensions. The microinertia balance law coupled with the equations of motion of an anisotropic fluid govern the ultimate outcome. By means of the second law of thermodynamics, constitutive equations are obtained in terms of the frame-independent tensors. In a special case, a theory of bar-like suspensions is obtained. The field equations, boundary and initial conditions are given for both the arbitrarily-shaped suspensions and the bar-like suspensions. The theory is demonstrated with the solution of the channel flow problem. The mean viscosity of the fluid with suspensions is determined. The motions of suspensions down flow are demonstrated.  相似文献   

17.
A continuum theory is introduced for viscous fluids carrying dense suspensions (such as blood) or emulsions of arbitrary shape and inertia. Suspended particles possess microinertia that make the mixture an anisotropic fluid whose viscosity changes with motion and orientation of suspensions. The microinertia balance law coupled with the equations of motion of an anisotropic fluid govern the ultimate outcome. By means of the second law of thermodynamics, constitutive equations are obtained in terms of the frame-independent tensors. In a special case, a theory of bar-like suspensions is obtained. The field equations, boundary and initial conditions are given for both the arbitrarily-shaped suspensions and the bar-like suspensions. The theory is demonstrated with the solution of the channel flow problem. The mean viscosity of the fluid with suspensions is determined. The motions of suspensions down flow are demonstrated.  相似文献   

18.
动脉中血液脉动流的一种分析方法   总被引:5,自引:0,他引:5  
动脉中的血液流动被分解为平衡状态(相当于平均压定常流状态)和叠加在平衡状态上的周期脉动流,利用Fung的血管应变能密度函数分析血管壁在平衡状态下的应力-应变关系,确定相对于平衡状态血管作微小变形所对应的周向弹性模量和轴向弹性模量,并建立在脉动压力作用下相应的管壁运动方程,与线性化Navier-Stokes方程联立,求得血液流动速度和血管壁位移的分析表达式,详细讨论血管壁周向和轴向弹性性质差异对脉博波、血液脉动流特性以及血管壁运动的影响.  相似文献   

19.
近年来,随着石油的不断开发开采,在研究高压注水,稠油热采等涉及到温度剧烈变化的研究领域中,油藏工作者难以通过经典的渗流力学理论和传统的油藏数值模拟方法得到有效、合理的解释,必须考虑到温度场、渗流场、应力场三场相互影响、相互作用、相互变化等相关变化因素.基于考虑热弹性的岩石应力一应变关系、地下流体运动定律、能量守恒定律,建立包括油水两相渗流控制方程、岩石变形体控制方程、温度场控制方程的稠油油藏三场耦合数学模型,运用全耦合算法实现同时求解所有耦合方程组,研究了应用有限元分析软件ADINA进行三场耦合规律的建模过程与方法.以小洼油田洼38块为例研究三场耦合规律.结果表明:距离井筒越近,其总位移、温度场、应力场、渗流场及岩石物性参数越会产生明显的变化;距离井筒越远,其变化越不明显.距离井筒越近的储层温度变化越剧烈,而距离井筒越远的储层温度变化越缓;井筒周围的温度变化呈现倒置漏斗形状,随着注水的不断进行,漏斗会逐渐平缓;最后储层各点的温度会平衡在同一温度水平线上,达到平衡状态.模型较为真实的模拟油藏实际开采情况.  相似文献   

20.
Of concern in the paper is a generalized theoretical study of the non-Newtonian characteristics of peristaltic flow of blood through micro-vessels, e.g. arterioles. The vessel is considered to be of variable cross-section and blood to be a Herschel–Bulkley type of fluid. The progressive wave front of the peristaltic flow is supposed sinusoidal/straight section dominated (SSD) (expansion/contraction type); Reynolds number is considered to be small with reference to blood flow in the micro-circulatory system. The equations that govern the non-Newtonian peristaltic flow of blood are considered to be non-linear. The objective of the study has been to examine the effect of amplitude ratio, mean pressure gradient, yield stress and the power law index on the velocity distribution, wall shear stress, streamline pattern and trapping. It is observed that the numerical estimates for the aforesaid quantities in the case of peristaltic transport of blood in a channel are much different from those for flow in an axisymmetric vessel of circular cross-section. The study further shows that peristaltic pumping, flow velocity and wall shear stress are significantly altered due to the non-uniformity of the cross-sectional radius of blood vessels of the micro-circulatory system. Moreover, the magnitude of the amplitude ratio and the value of the fluid index are important parameters that affect the flow behaviour. Novel features of SSD wave propagation that affect the flow behaviour of blood have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号