首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
原子转移自由基聚合(ATRP)应用于乳液聚合体系的主要挑战在于如何同时保证乳液的稳定性和聚合反应的可控性。本文主要对乳液ATRP体系中影响聚合反应可控性和乳液稳定性的各种因素、乳液ATRP的机理和乳液ATRP的应用等方面进行了综述。表面活性剂亲水亲油性及其亲水亲油基团的化学性质、催化剂/配体在油/水两相之间的分配行为、引发剂的溶解性、反应温度以及各组分的浓度是影响反应可控性和乳液稳定性的主要因素。各组分在油/水两相中的分配行为使得乳液ATRP的机理比传统乳液聚合更加复杂。乳液原子转移自由基聚合结合了活性自由基聚合和乳液聚合的优点,在理论研究和工业生产上具有很大的应用前景。  相似文献   

2.
3.
Controlled radical polymerization using RAFT has the potential to make polymers with virtually any desired molecular architecture. For this to be implemented on an industrial scale, it must be performed by polymerization in disperse media. However, simply adding a RAFT agent to a conventional emulsion polymerization recipe leads to a loss of molecular weight control and formation of coagulum, probably because of nucleation in droplets, which is normally an unlikely phenomenon in emulsion polymerizations. Recently, a method has been devised for implementing RAFT in ab initio emulsion polymerization that avoids droplets in the particle formation stage. The molecular weight distribution of the polymer thus formed shows that molecular weight control is maintained throughout the polymerization. A model is developed to predict the particle size formed in this new type of emulsion polymerization. The new methodology enables synthesis of novel dispersions where molecular architecture can be precisely controlled, such as structured core-shell particles.  相似文献   

4.
5.
Stable latexes of poly(meth)acrylates with predetermined molecular weights, narrow molecular‐weight distributions, and controlled architecture were prepared by true ab initio emulsion atom‐transfer radical polymerization. Water‐soluble (macro)initiators in combination with a hydrophilic catalyst, Cu/tris(2‐pyridylmethyl)amine, initiated the polymerization in the aqueous phase. The catalyst strongly interacted with the surfactant sodium dodecyl sulfate (SDS), thereby tuning the polymerization within nucleated hydrophobic polymer particles. Long‐term stable latexes were obtained, even with SDS loading below 3 wt % relative to monomer. Block and gradient copolymers were prepared in situ. The reaction volume and solid content were successfully increased to 100 mL and 40 vol %, respectively, thus suggesting facile scale‐up of this technique. The proposed setup could be integrated in existing industrial plants used for emulsion polymerization.  相似文献   

6.
The onset and extent of secondary particle formation in the seeded emulsion polymerization of vinyl chloride were investigated by performing a series of seeded polymerizations at different concentrations of seed latex and surfactant. It was found that, in general, both the onset and the extent of secondary particle formation are determined not only by the rate of homogeneous nucleation, but also by the rates of particle coagulation. A comparison of methods to compute the evolution of the particle size distribution in vinyl chloride emulsion polymerization was also carried out. For growth processes, the widely-used pseudo-bulk model gives correct answers. For processes involving particle formation, on the other hand, this model cannot be used because it neglects, among others, the effects of nucleation and coagulation on the radical number distribution. To surmount this problem, we propose to use the zero-one-two model, for which the full population balance equations are given here.  相似文献   

7.
Summary: Free radical emulsion polymerization of styrene (S) or butyl acrylate (BA) in the presence of latices of linear polyethylene (PE) prepared by catalytic emulsion polymerization affords colloidally stable multiphase latices. Coagulation of a PE/PS latex affords nanocomposites composed of small PE phases dispersed in a PS matrix, as evidenced by the large supercoolings of PE crystallization (by DSC). TEM of PE/PBA latices indicates a PBA phase around the PE particles under the emulsion polymerization conditions investigated. Films formed from these dispersions exhibit homogeneously dispersed PE particles.

Multiphase latices are obtained by free radical emulsion polymerization of butyl acrylate in the presence of latices of linear polyethylene (PE) prepared by catalytic emulsion polymerization.  相似文献   


8.
Ab initio emulsion polymerization of methyl methacrylate (MMA) using a water‐soluble organotellurium chain transfer agent in the presence of the surfactant Brij 98 in water is reported. Polymerization proceeded under both thermal and visible light‐irradiation conditions, giving poly(methyl methacrylate) (PMMA) with controlled molecular weight and low dispersity (?<1.5). Despite the formation of an opaque latex, the photoactivation of the organotellurium dormant species took place efficiently, as demonstrated by the quantitative monomer conversion and temporal control. Control of polymer particle size (PDI<0.030) was also achieved using a semi‐batch monomer addition process. The PMMA polymer in the particles retained high end‐group fidelity and was successfully used for the synthesis of block copolymers.  相似文献   

9.
We report here a novel approach for making reversibly coagulatable and redispersible polyacrylate latexes by emulsion (co)polymerization of methyl methacrylate (MMA) using a polymeric surfactant, poly(2‐(dimethylamino)ethyl methacrylate)10block‐poly(methyl methacrylate)14. The surfactant was protonated with HCl prior to use. The resulted PMMA latexes were readily coagulated with trace amount of caustic soda. The coagulated latex particles, after washing with deionized water, could be redispersed into fresh water to form stable latexes again by CO2 bubbling with ultrasonication. The recovered latexes could then be coagulated by N2 bubbling with gentle heating. These coagulation and redispersion processes were repeatable by the CO2/N2 bubbling.  相似文献   

10.
An aqueous solution of the hydrophilic monomer such as acrylic acid is dispersed in a continuous lipophilic medium using surfactants, which promote the formation of a water- in-oil (W/O) emulsion. The water-in-oil (W/O) emulsion polymerization process has shown superior characteristics1 such as the low viscosity of the dispersion, easy removal of the reaction heat2 and the high molecular weight of the obtained polymer3 etc. And it is attractive to investigate the reaction system because the…  相似文献   

11.
NMRP is a controlled polymerization technique with the ability to produce polymers with a highly controlled microstructure. The properties of the thus obtained polymers make it desirable to scale this technique to an industrial level, but there are still some challenges to be faced, e.g., to develop emulsion NMRP at low temperatures (lower than about 100 °C) with inexpensive, commercially available nitroxides such as TEMPO. Here, the emulsion NMRP of styrene using TEMPO at temperatures lower than 100 °C is described. An optimal control of molecular weights and polydispersities and a fast polymerization rate are obtained.

  相似文献   


12.
13.
张彬  张兆斌  万小龙  胡春圃  应圣康 《化学学报》2003,61(12):2008-2012
以卤化亚铜(CuX)/1,10-邻二氮菲(phen)配合物为催化剂、2-溴代异丁酸 乙酯(EBiB)为引发剂、十二烷基磺酸钠(SLS)为乳化剂,进行了甲基丙烯酸甲 酯(MMA)的原子转移自由基乳液聚合(ATRP)反应。结果表明,与较高温度(70 - 90 ℃)下的聚合反应相比,室温(25 ℃)时聚合反应有更好的可控性,通过 外加钝化剂的复合催化引发体系CuBr/CuBr_2/phen/EBiB或利用CuCl/phen/EBiB催 化引发体系的“卤素交换反应”,可进一步改善聚合反应的可控性。紫外发光谱测 定结果表明,CuBr/phen配合物在MMA相中的分配倾向随着温度的降低而增大,使得 室温下MMA的乳液ATRP保持了较好的可控性和较快的反应速度。  相似文献   

14.
Summary: Means of improving rates in RAFT‐mediated radical emulsion polymerizations are developed, by setting out strategies to minimize the inhibition and retardation that always are present in these systems. These effects arise from the RAFT‐induced exit of radicals, the desorption of the RAFT‐reinitiating radical from the particles, and the specificity of the reinitiating radical to the RAFT agent. Methods for reducing the inhibition period such as using a more hydrophobic reinitiating radical are predicted to show a significant improvement in the inhibition periods. The time‐dependent behavior of the RAFT adduct to the entering radical and the RAFT‐induced exit (loss) of radicals from particles are studied using a previously described Monte Carlo model of RAFT/emulsion particles. It is shown that an effective way of reducing the rate coefficient for the exit of radicals from the particles is to use a less active RAFT agent. Techniques for improving the rate of polymerization of RAFT/emulsion systems are suggested based upon the coherent understanding contained in these models: the use of an oligomeric adduct to the RAFT agent, a less water‐soluble RAFT re‐initiating group, and a less active RAFT agent.

Populations of the different types of particles (left axis) along with the concentration of the initial RAFT agent, DR (right axis), as a function of time.  相似文献   


15.
Summary : Comprehensive experimental results of the nucleation stage of styrene emulsion polymerization in the absence as well as in the presence of emulsifier at different concentrations are presented. In addition, the influence of initiator type and presence of seed particles are studied. The nucleation mechanism is verified by means of on-line monitoring of the optical transmission and the conductivity of the aqueous phase. Results prove that micelles do not alter the nucleation mechanism which comprises the initiation of water soluble oligomers in the aqueous phase followed by their aggregation into colloidally stable latex particles. Surfactants assist with nucleation as they lower the activation free energy of particle formation. Contrary, in the presence of seed particles above a critical volume fraction the formation of new particles can be suppressed.  相似文献   

16.
Nitroxide‐mediated emulsion polymerizations of n‐butyl acrylate and styrene were performed with a monofunctional, water‐soluble alkoxyamine initiator and a difunctional one. Two different processes were applied, either in two steps or under semibatch conditions. In particular, the polymerization times were strongly reduced, while high conversions and good control over the polymer characteristics were maintained. In all cases, stable latexes were recovered; with the difunctional initiator in particular, they exhibited small particles and narrow particle size distributions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4142–4153, 2006  相似文献   

17.
Summary : Monodisperse P(BA-MMA-MAA-EGDMA)/P(St-MAA-DVB) core/shell latex particles were first synthesized by a four-step emulsion polymerization, and a new kind of latex particles with “bowl-like” morphology were obtained by post-treating the resultant core/shell particles under alkali condition. Results indicated that the feeding rates of the monomer mixture and initiator aqueous solution were the key parameters to obtain monodisperse core/shell latex particles in the emulsion polymerization process, and the latex particles with “bowl-like” morphology could be generated only when the treatment temperature was equal or higher than 70 °C.  相似文献   

18.
共聚物酸掺杂接枝聚苯胺的研究   总被引:19,自引:2,他引:19  
采用核壳乳液聚合方法合成了以甲基丙酸甲酯、甲基丙烯酸和丙烯酸丁酯三元共聚物酸为核,聚苯胺为壳的导电高分子复合物。复合物的电导率随着聚苯胺含量的增加而升高。用粒径分析仪、TEM、FT-IR和DSC对复合材料进行了表征。结果表明形成了核壳结构,由于共聚物酸起到了掺杂剂的作用,使制得的复合物能在环己酮、四氢呋喃等普通有机溶剂中有好的溶解性。  相似文献   

19.
Amphiphilic star shaped polymers with poly(ethylene oxide) (PEO) arms and cross‐linked hydrophobic core were synthesized in water via either conventional free radical polymerization (FRP) or atom transfer radical polymerization (ATRP) techniques using a simple “arm‐first” method. In FRP, PEO based macromonomers (MM) were used as arm precursors, which were then cross‐linked by divinylbenzene (DVB) using 2,2′‐azoisobutyronitrile (AIBN). Uniform star polymers ( < 1.2) were achieved through adjustment of the ratio of PEO MM, DVB, and AIBN. While in case of ATRP, both PEO MM, and PEO based macroinitiator (MI) were used as arm precursors with ethylene glycol diacrylate as cross‐linker. Even more uniform star polymers with less contamination by low MW polymers were obtained, as compared to the products synthesized by FRP.

  相似文献   


20.
The synthesis and electrochemical performance of three‐dimensionally ordered macroporous (3DOM) nitroxide polymer brush electrodes for organic radical batteries are reported. The 3DOM electrodes are synthesized via polystyrene colloidal crystal templating with electropolymerization of polypyrrole, modification of surface initiator, and surface‐initiated atom transfer radical polymerization. The discharge capacity of the 3DOM electrodes is proportional to the thickness of the inverse opal. The discharge capacity of the 3DOM electrode at a discharge rate of 5 C is 40 times higher than that of the planar electrode; its cycle‐life performance exhibits 96.1% retention after 250 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号