首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that flowsheets of oil refineries can be associated to complex network topologies that are scale-free, display small-world effect and possess hierarchical organization. The emergence of these properties from such man-made networks is explained as a consequence of the currently used principles for process design, which include heuristics as well as algorithmic techniques. We expect these results to be valid for chemical plants of different types and capacities.  相似文献   

2.
吴果林  顾长贵  邱路  杨会杰 《中国物理 B》2017,26(12):128901-128901
Projection is a widely used method in bipartite networks. However, each projection has a specific application scenario and differs in the forms of mapping for bipartite networks. In this paper, inspired by the network-based information exchange dynamics, we propose a uniform framework of projection. Subsequently, an information exchange rate projection based on the nature of community structures of a network(named IERCP) is designed to detect community structures of bipartite networks. Results from the synthetic and real-world networks show that the IERCP algorithm has higher performance compared with the other projection methods. It suggests that the IERCP may extract more information hidden in bipartite networks and minimize information loss.  相似文献   

3.
文章从光信息的传输、交换与处理、存储与读出、获取与显示等重要技术领域的发展,介绍了半导体信息光电子学的现状以及在未来信息网络发展中的关键地位.  相似文献   

4.
《Physics letters. A》2014,378(16-17):1091-1094
The fractal and self-similarity properties are revealed in many complex networks. The classical information dimension is an important method to study fractal and self-similarity properties of planar networks. However, it is not practical for real complex networks. In this Letter, a new information dimension of complex networks is proposed. The nodes number in each box is considered by using the box-covering algorithm of complex networks. The proposed method is applied to calculate the fractal dimensions of some real networks. Our results show that the proposed method is efficient when dealing with the fractal dimension problem of complex networks.  相似文献   

5.
We find exact solutions in 5D inhomogeneous matter dominated model with a varying cosmological constant. Adjusting arbitrary constants of integration one can also achieve acceleration in our model. Aside from an initial singularity our spacetime is regular everywhere including the centre of the inhomogeneous distribution. We also study the analogous homogeneous universe in (4 + d) dimensions. Here an initially decelerating model is found to give late acceleration in conformity with the current observational demands. We also find that both anisotropy and number of dimensions have a role to play in determining the time of flip, in fact the flip is delayed in multidimensional models. Some astrophysical parameters like the age, luminosity distance, etc., are also calculated and the influence of extra dimensions is briefly discussed. Interestingly our model yields a larger age of the universe compared to many other quintessential models.  相似文献   

6.
万茜  周进  刘曾荣 《物理学报》2012,61(1):10203-010203
无标度性、小世界性、功能模块结构及度负关联性是大量生物网络共同的特征. 为了理解生物网络无标度性、小世界性和度负关联性的形成机制, 研究者已经提出了各种各样基于复制和变异的网络增长模型. 在本文中,我们从生物学的角度通过引入偏爱小复制原则及变异和非均匀的异源二聚作用构建了一个简单的蛋白质相互作用网络演化模型.数值模拟结果表明,该演化模型几乎可以再现现在实测结果所公认的蛋白质相互作用网络的性质:无标度性、小世界性、度负关联性和功能模块结构. 我们的演化模型对理解蛋白质相互作用网络演化过程中的可能机制提供了一定的帮助. 关键词: 蛋白质相互作用网络 偏爱小 非均匀的异源二聚作用 功能模块结构  相似文献   

7.
We build an analysis based on the Algorithmic Information Theory of computational creativity and extend it to revisit computational aesthetics, thereby, improving on the existing efforts of its formulation. We discuss Kolmogorov complexity, models and randomness deficiency (which is a measure of how much a model falls short of capturing the regularities in an artifact) and show that the notions of typicality and novelty of a creative artifact follow naturally from such definitions. Other exciting formalizations of aesthetic measures include logical depth and sophistication with which we can define, respectively, the value and creator’s artistry present in a creative work. We then look at some related research that combines information theory and creativity and analyze them with the algorithmic tools that we develop throughout the paper. Finally, we assemble the ideas and their algorithmic counterparts to complete an algorithmic information theoretic recipe for computational creativity and aesthetics.  相似文献   

8.
We introduce networks of three-state neurons, where the additional state embodies the absence of information. Their dynamical behavior is studied from the standpoint of information processing. These networks display strong pattern completion capabilities. Moreover, inference naturally occurs between coherent patterns.  相似文献   

9.
Differently from theoretical scale-free networks, most real networks present multi-scale behavior, with nodes structured in different types of functional groups and communities. While the majority of approaches for classification of nodes in a complex network has relied on local measurements of the topology/connectivity around each node, valuable information about node functionality can be obtained by concentric (or hierarchical) measurements. This paper extends previous methodologies based on concentric measurements, by studying the possibility of using agglomerative clustering methods, in order to obtain a set of functional groups of nodes, considering particular institutional collaboration network nodes, including various known communities (departments of the University of São Paulo). Among the interesting obtained findings, we emphasize the scale-free nature of the network obtained, as well as identification of different patterns of authorship emerging from different areas (e.g. human and exact sciences). Another interesting result concerns the relatively uniform distribution of hubs along concentric levels, contrariwise to the non-uniform pattern found in theoretical scale-free networks such as the BA model.  相似文献   

10.
Multidimensional configurations with a Minkowski external spacetime and a spherically symmetric global monopole in extra dimensions are discussed in the context of the braneworld concept. The monopole is formed with a hedgehoglike set of scalar fields φi with a symmetry-breaking potential V depending on the magnitude φ2 = φiφi. All possible kinds of globally regular configurations are singled out without specifying the shape of V(φ). These variants are governed by the maximum value φm of the scalar field, characterizing the energy scale of symmetry breaking. If φm < φcr (where φcr is a critical value of φ related to the multidimensional Planck scale), the monopole reaches infinite radii, whereas in the “strong field regime,” when φm ≥ φcr, the monopole may end with a finite-radius cylinder or have two regular centers. The warp factors of monopoles with both infinite and finite radii may either exponentially grow or tend to finite constant values far from the center. All such configurations are shown to be able to trap test scalar matter, in striking contrast to RS2 type five-dimensional models. The monopole structures obtained analytically are also found numerically for the Mexican hat potential with an additional parameter acting as a cosmological constant.  相似文献   

11.
In this work, we present a new methodology to study the structure of the configuration spaces of hard combinatorial problems. It consists in building the network that has as nodes the locally optimal configurations and as edges the weighted oriented transitions between their basins of attraction. We apply the approach to the detection of communities in the optima networks produced by two different classes of instances of a hard combinatorial optimization problem: the quadratic assignment problem (QAP). We provide evidence indicating that the two problem instance classes give rise to very different configuration spaces. For the so-called real-like class, the networks possess a clear modular structure, while the optima networks belonging to the class of random uniform instances are less well partitionable into clusters. This is convincingly supported by using several statistical tests. Finally, we briefly discuss the consequences of the findings for heuristically searching the corresponding problem spaces.  相似文献   

12.
任卓明 《物理学报》2020,(4):277-285
节点影响力的识别和预测具有重要的理论意义和应用价值,是复杂网络的热点研究领域.目前大多数研究方法都是针对静态网络或动态网络某一时刻的快照进行的,然而在实际应用场景中,社会、生物、信息、技术等复杂网络都是动态演化的.因此在动态复杂网络中评估节点影响力以及预测节点未来影响力,特别是在网络结构变化之前的预测更具意义.本文系统地总结了动态复杂网络中节点影响力算法面临的三类挑战,即在增长网络中,节点影响力算法的计算复杂性和时间偏见;网络实时动态演化时,节点影响力算法的适应性;网络结构微扰或突变时,节点影响力算法的鲁棒性,以及利用网络结构演变阐释经济复杂性涌现的问题.最后总结了这一研究方向几个待解决的问题并指出未来可能的发展方向.  相似文献   

13.
Assembly theory (referred to in prior works as pathway assembly) has been developed to explore the extrinsic information required to distinguish a given object from a random ensemble. In prior work, we explored the key concepts relating to deconstructing an object into its irreducible parts and then evaluating the minimum number of steps required to rebuild it, allowing for the reuse of constructed sub-objects. We have also explored the application of this approach to molecules, as molecular assembly, and how molecular assembly can be inferred experimentally and used for life detection. In this article, we formalise the core assembly concepts mathematically in terms of assembly spaces and related concepts and determine bounds on the assembly index. We explore examples of constructing assembly spaces for mathematical and physical objects and propose that objects with a high assembly index can be uniquely identified as those that must have been produced using directed biological or technological processes rather than purely random processes, thereby defining a new scale of aliveness. We think this approach is needed to help identify the new physical and chemical laws needed to understand what life is, by quantifying what life does.  相似文献   

14.
In this Letter, we derive the explicit exact formulas for the finite temperature Casimir force acting on a pair of parallel plates in the presence of extra compactified dimensions within the framework of Kaluza–Klein theory. Using the piston analysis, we show that at any temperature, the Casimir force due to massless scalar field with Dirichlet boundary conditions on the plates is always attractive and the effect of extra dimensions becomes stronger when the size or number of the extra dimensions increases. These properties are not affected by the explicit geometry and topology of the Kaluza–Klein space.  相似文献   

15.
The dimensionality of defects in high explosives controls their heat generation and the expansion of deflagrations from them. We compare the behaviour of spherical voids in three dimensions to that of circular voids in two dimensions. The behaviour is qualitatively similar, but the additional focusing along the extra transverse dimension significantly reduces the piston velocity needed to initiate reactions. However, the reactions do not grow as well in three dimensions, so detonations require larger piston velocities. Pressure exponents are seen to be similar to those for the two-dimensional system.  相似文献   

16.
We propose a method for representing vertices of a complex network as points in a Euclidean space of an appropriate dimension. To this end, we first adopt two widely used quantities as the measures for the dissimilarity between vertices. The dissimilarity is then transformed into its corresponding distance in a Euclidean space via the non-metric multidimensional scaling. We applied the proposed method to real-world as well as models of complex networks. We empirically found that real-world complex networks were embedded in a Euclidean space of relatively lower dimensions and the configuration of vertices in the space was mostly characterized by the self-similarity of a multifractal. In contrast, by applying the same scheme to the network models, we found that, in general, higher dimensions were needed to embed the networks into a Euclidean space and the embedding results usually did not exhibit the self-similar property. From the analysis, we learn that the proposed method serves a way not only to visualize the complex networks in a Euclidean space but to characterize the complex networks in a different manner from conventional ways.  相似文献   

17.
Hopfield neural networks on scale-free networks display the power law relation between the stability of patterns and the number of patterns.The stability is measured by the overlap between the output state and the stored pattern which is presented to a neural network.In simulations the overlap declines to a constant by a power law decay.Here we provide the explanation for the power law behavior through the signal-to-noise ratio analysis.We show that on sparse networks storing a plenty of patterns the stability of stored patterns can be approached by a power law function with the exponent-0.5.There is a difference between analytic and simulation results that the analytic results of overlap decay to 0.The difference exists because the signal and noise term of nodes diverge from the mean-field approach in the sparse finite size networks.  相似文献   

18.
Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network’s structure as opposed to its function. Here, we introduce a new information-theoretic tool—information fragmentation analysis—that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved in silico solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and “think”. The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing.  相似文献   

19.
Throughout the years, measuring the complexity of networks and graphs has been of great interest to scientists. The Kolmogorov complexity is known as one of the most important tools to measure the complexity of an object. We formalized a method to calculate an upper bound for the Kolmogorov complexity of graphs and networks. Firstly, the most simple graphs possible, those with O(1) Kolmogorov complexity, were identified. These graphs were then used to develop a method to estimate the complexity of a given graph. The proposed method utilizes the simple structures within a graph to capture its non-randomness. This method is able to capture features that make a network closer to the more non-random end of the spectrum. The resulting algorithm takes a graph as an input and outputs an upper bound to its Kolmogorov complexity. This could be applicable in, for example evaluating the performances of graph compression methods.  相似文献   

20.
High-order finite elements often have a higher accuracy per degree of freedom than the classical low-order finite elements. However, in the context of implicit time-stepping methods, high-order finite elements present challenges to the construction of efficient simulations due to the high cost of inverting the denser finite element matrix. There are many cases where simulations are limited by the memory required to store the matrix and/or the algorithmic components of the linear solver. We are particularly interested in preconditioned Krylov methods for linear systems generated by discretization of elliptic partial differential equations with high-order finite elements. Using a preconditioner like Algebraic Multigrid can be costly in terms of memory due to the need to store matrix information at the various levels. We present a novel method for defining a preconditioner for systems generated by high-order finite elements that is based on a much sparser system than the original high-order finite element system. We investigate the performance for non-uniform meshes on a cube and a cubed sphere mesh, showing that the sparser preconditioner is more efficient and uses significantly less memory. Finally, we explore new methods to construct the sparse preconditioner and examine their effectiveness for non-uniform meshes. We compare results to a direct use of Algebraic Multigrid as a preconditioner and to a two-level additive Schwarz method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号