首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
We build an analysis based on the Algorithmic Information Theory of computational creativity and extend it to revisit computational aesthetics, thereby, improving on the existing efforts of its formulation. We discuss Kolmogorov complexity, models and randomness deficiency (which is a measure of how much a model falls short of capturing the regularities in an artifact) and show that the notions of typicality and novelty of a creative artifact follow naturally from such definitions. Other exciting formalizations of aesthetic measures include logical depth and sophistication with which we can define, respectively, the value and creator’s artistry present in a creative work. We then look at some related research that combines information theory and creativity and analyze them with the algorithmic tools that we develop throughout the paper. Finally, we assemble the ideas and their algorithmic counterparts to complete an algorithmic information theoretic recipe for computational creativity and aesthetics.  相似文献   

2.
Throughout the years, measuring the complexity of networks and graphs has been of great interest to scientists. The Kolmogorov complexity is known as one of the most important tools to measure the complexity of an object. We formalized a method to calculate an upper bound for the Kolmogorov complexity of graphs and networks. Firstly, the most simple graphs possible, those with O(1) Kolmogorov complexity, were identified. These graphs were then used to develop a method to estimate the complexity of a given graph. The proposed method utilizes the simple structures within a graph to capture its non-randomness. This method is able to capture features that make a network closer to the more non-random end of the spectrum. The resulting algorithm takes a graph as an input and outputs an upper bound to its Kolmogorov complexity. This could be applicable in, for example evaluating the performances of graph compression methods.  相似文献   

3.
Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network’s structure as opposed to its function. Here, we introduce a new information-theoretic tool—information fragmentation analysis—that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved in silico solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and “think”. The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing.  相似文献   

4.
Complex biological systems consist of large numbers of interconnected units, characterized by emergent properties such as collective computation. In spite of all the progress in the last decade, we still lack a deep understanding of how these properties arise from the coupling between the structure and dynamics. Here, we introduce the multiscale emergent functional state, which can be represented as a network where links encode the flow exchange between the nodes, calculated using diffusion processes on top of the network. We analyze the emergent functional state to study the distribution of the flow among components of 92 fungal networks, identifying their functional modules at different scales and, more importantly, demonstrating the importance of functional modules for the information content of networks, quantified in terms of network spectral entropy. Our results suggest that the topological complexity of fungal networks guarantees the existence of functional modules at different scales keeping the information entropy, and functional diversity, high.  相似文献   

5.
Gene regulatory networks (GRNs) control biological processes like pluripotency, differentiation, and apoptosis. Omics methods can identify a large number of putative network components (on the order of hundreds or thousands) but it is possible that in many cases a small subset of genes control the state of GRNs. Here, we explore how the topology of the interactions between network components may indicate whether the effective state of a GRN can be represented by a small subset of genes. We use methods from information theory to model the regulatory interactions in GRNs as cascading and superposing information channels. We propose an information loss function that enables identification of the conditions by which a small set of genes can represent the state of all the other genes in the network. This information-theoretic analysis extends to a measure of free energy change due to communication within the network, which provides a new perspective on the reducibility of GRNs. Both the information loss and relative free energy depend on the density of interactions and edge communication error in a network. Therefore, this work indicates that a loss in mutual information between genes in a GRN is directly coupled to a thermodynamic cost, i.e., a reduction of relative free energy, of the system.  相似文献   

6.
Understanding the complex process of information spread in online social networks (OSNs) enables the efficient maximization/minimization of the spread of useful/harmful information. Users assume various roles based on their behaviors while engaging with information in these OSNs. Recent reviews on information spread in OSNs have focused on algorithms and challenges for modeling the local node-to-node cascading paths of viral information. However, they neglected to analyze non-viral information with low reach size that can also spread globally beyond OSN edges (links) via non-neighbors through, for example, pushed information via content recommendation algorithms. Previous reviews have also not fully considered user roles in the spread of information. To address these gaps, we: (i) provide a comprehensive survey of the latest studies on role-aware information spread in OSNs, also addressing the different temporal spreading patterns of viral and non-viral information; (ii) survey modeling approaches that consider structural, non-structural, and hybrid features, and provide a taxonomy of these approaches; (iii) review software platforms for the analysis and visualization of role-aware information spread in OSNs; and (iv) describe how information spread models enable useful applications in OSNs such as detecting influential users. We conclude by highlighting future research directions for studying information spread in OSNs, accounting for dynamic user roles.  相似文献   

7.
Shannon’s entropy measure is a popular means for quantifying ecological diversity. We explore how one can use information-theoretic measures (that are often called indices in ecology) on joint ensembles to study the diversity of species interaction networks. We leverage the little-known balance equation to decompose the network information into three components describing the species abundance, specificity, and redundancy. This balance reveals that there exists a fundamental trade-off between these components. The decomposition can be straightforwardly extended to analyse networks through time as well as space, leading to the corresponding notions for alpha, beta, and gamma diversity. Our work aims to provide an accessible introduction for ecologists. To this end, we illustrate the interpretation of the components on numerous real networks. The corresponding code is made available to the community in the specialised Julia package EcologicalNetworks.jl.  相似文献   

8.
Identifying influential nodes in complex networks has attracted the attention of many researchers in recent years. However, due to the high time complexity, methods based on global attributes have become unsuitable for large-scale complex networks. In addition, compared with methods considering only a single attribute, considering multiple attributes can enhance the performance of the method used. Therefore, this paper proposes a new multiple local attributes-weighted centrality (LWC) based on information entropy, combining degree and clustering coefficient; both one-step and two-step neighborhood information are considered for evaluating the influence of nodes and identifying influential nodes in complex networks. Firstly, the influence of a node in a complex network is divided into direct influence and indirect influence. The degree and clustering coefficient are selected as direct influence measures. Secondly, based on the two direct influence measures, we define two indirect influence measures: two-hop degree and two-hop clustering coefficient. Then, the information entropy is used to weight the above four influence measures, and the LWC of each node is obtained by calculating the weighted sum of these measures. Finally, all the nodes are ranked based on the value of the LWC, and the influential nodes can be identified. The proposed LWC method is applied to identify influential nodes in four real-world networks and is compared with five well-known methods. The experimental results demonstrate the good performance of the proposed method on discrimination capability and accuracy.  相似文献   

9.
Reconstructability Analysis (RA) and Bayesian Networks (BN) are both probabilistic graphical modeling methodologies used in machine learning and artificial intelligence. There are RA models that are statistically equivalent to BN models and there are also models unique to RA and models unique to BN. The primary goal of this paper is to unify these two methodologies via a lattice of structures that offers an expanded set of models to represent complex systems more accurately or more simply. The conceptualization of this lattice also offers a framework for additional innovations beyond what is presented here. Specifically, this paper integrates RA and BN by developing and visualizing: (1) a BN neutral system lattice of general and specific graphs, (2) a joint RA-BN neutral system lattice of general and specific graphs, (3) an augmented RA directed system lattice of prediction graphs, and (4) a BN directed system lattice of prediction graphs. Additionally, it (5) extends RA notation to encompass BN graphs and (6) offers an algorithm to search the joint RA-BN neutral system lattice to find the best representation of system structure from underlying system variables. All lattices shown in this paper are for four variables, but the theory and methodology presented in this paper are general and apply to any number of variables. These methodological innovations are contributions to machine learning and artificial intelligence and more generally to complex systems analysis. The paper also reviews some relevant prior work of others so that the innovations offered here can be understood in a self-contained way within the context of this paper.  相似文献   

10.
11.
Metabolism and physiology frequently follow non-linear rhythmic patterns which are reflected in concepts of homeostasis and circadian rhythms, yet few biomarkers are studied as dynamical systems. For instance, healthy human development depends on the assimilation and metabolism of essential elements, often accompanied by exposures to non-essential elements which may be toxic. In this study, we applied laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to reconstruct longitudinal exposure profiles of essential and non-essential elements throughout prenatal and early post-natal development. We applied cross-recurrence quantification analysis (CRQA) to characterize dynamics involved in elemental integration, and to construct a graph-theory based analysis of elemental metabolism. Our findings show how exposure to lead, a well-characterized toxicant, perturbs the metabolism of essential elements. In particular, our findings indicate that high levels of lead exposure dysregulate global aspects of metabolic network connectivity. For example, the magnitude of each element’s degree was increased in children exposed to high lead levels. Similarly, high lead exposure yielded discrete effects on specific essential elements, particularly zinc and magnesium, which showed reduced network metrics compared to other elements. In sum, this approach presents a new, systems-based perspective on the dynamics involved in elemental metabolism during critical periods of human development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号