首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
Thirty-three benzophenanthridine alkaloid derivatives (1a–1u and 2a–2l) were synthesized, and their cytotoxic activities against two leukemia cell lines (Jurkat Clone E6-1 and THP-1) were evaluated in vitro using a Cell Counting Kit-8 (CCK-8) assay. Nine of these derivatives (1i–l, 2a, and 2i–l) with IC50 values in the range of 0.18–7.94 μM showed significant inhibitory effects on the proliferation of both cancer cell lines. Analysis of the primary structure–activity relationships revealed that different substituent groups at the C-6 position might have an effect on the antileukemia activity of the corresponding compounds. In addition, the groups at the C-7 and C-8 positions could influence the antileukemia activity. Among these compounds, 2j showed the strongest in vitro antiproliferative activity against Jurkat Clone E6-1 and THP-1 cells with good IC50 values (0.52 ± 0.03 μM and 0.48 ± 0.03 μM, respectively), slightly induced apoptosis, and arrested the cell-cycle, all of which suggests that compound 2j may represent a potentially useful start point to undergo further optimization toward a lead compound.  相似文献   

2.
Focal adhesion kinase (FAK) is responsible for the development and progression of various malignancies. With the aim to explore novel FAK inhibitors as anticancer agents, a series of 2,4-dianilinopyrimidine derivatives 8a–8i and 9a–9g containing 4-(morpholinomethyl)phenyl and N-substituted benzamides have been designed and synthesized. Among them, compound 8a displayed potent anti-FAK activity (IC50 = 0.047 ± 0.006 μM) and selective antiproliferative effects against H1975 (IC50 = 0.044 ± 0.011 μM) and A431 cells (IC50 = 0.119 ± 0.036 μM). Furthermore, compound 8a also induced apoptosis in a dose-dependent manner, arresting the cells in S/G2 phase and inhibiting the migration of H1975 cells, all of which were superior to those of TAE226. The docking analysis of compound 8a was performed to elucidate its possible binding modes with FAK. These results established 8a as our lead compound to be further investigated as a potential FAK inhibitor and anticancer agent.  相似文献   

3.
VEGFR-2, the subtype receptor tyrosine kinase (RTK) responsible for angiogenesis, is expressed in various cancer cells. Thus, VEGFER-2 inhibition is an efficient approach for the discovery of new anticancer agents. Accordingly, a new set of nicotinamide derivatives were designed and synthesized to be VEGFR-2 inhibitors. The chemical structures were confirmed using IR, 1H-NMR, and 13C-NMR spectroscopy. The obtained compounds were examined for their anti-proliferative activities against the human cancer cell lines (HCT-116 and HepG2). VEGFR-2 inhibitory activities were determined for the titled compounds. Compound 8 exhibited the strongest anti-proliferative activities with IC50 values of 5.4 and 7.1 µM against HCT-116 and HepG2, respectively. Interestingly, compound 8 was the most potent VEGFR-2 inhibitor with an IC50 value of 77.02 nM (compare to sorafenib: IC50 = 53.65 nM). Treatment of HCT-116 cells with compound 8 produced arrest of the cell cycle at the G0–G1 phase and a total apoptosis increase from 3.05 to 19.82%—6.5-fold in comparison to the negative control. In addition, compound 8 caused significant increases in the expression levels of caspase-8 (9.4-fold) and Bax (9.2-fold), and a significant decrease in the Bcl-2 expression level (3-fold). The effects of compound 8 on the levels of the immunomodulatory proteins (TNF-α and IL-6) were examined. There was a marked decrease in the level of TNF-α (92.37%) compared to the control (82.47%) and a non-significant reduction in the level of IL-6. In silico docking, molecular dynamics simulations, and MM-PBSA studies revealed the high affinity, the correct binding, and the optimum dynamics of compound 8 inside the active site of VEGFR-2. Finally, in silico ADMET and toxicity studies indicated acceptable values of drug-likeness. In conclusion, compound 8 has emerged as a promising anti-proliferative agent targeting VEGFR-2 with significant apoptotic and immunomodulatory effects.  相似文献   

4.
[1,2,4]Triazolo[1,5-a]pyrimidine and indole skeletons are widely used to design anticancer agents. Therefore, in this work, a series of [1,2,4]triazolo[1,5-a]pyrimidine indole derivatives were designed and synthesized by the molecular hybridization strategy. The antiproliferative activities of the target compounds H1–H18 against three human cancer cell lines, MGC-803, HCT-116 and MCF-7, were tested. Among them, compound H12 exhibited the most active antiproliferative activities against MGC-803, HCT-116 and MCF-7 cells, with IC50 values of 9.47, 9.58 and 13.1 μM, respectively, which were more potent than that of the positive drug 5-Fu. In addition, compound H12 could dose-dependently inhibit the growth and colony formation of MGC-803 cells. Compound H12 exhibited significant inhibitory effects on the ERK signaling pathway, resulting in the decreased phosphorylation levels of ERK1/2, c-Raf, MEK1/2 and AKT. Furthermore, compound 12 induced cell apoptosis and G2/M phase arrest, and regulated cell cycle-related and apoptosis-related proteins in MGC-803 cells. Taken together, we report here that [1,2,4]triazolo[1,5-a]pyrimidine indole derivatives, used as anticancer agents via the suppression of ERK signaling pathway and the most active compound, H12, might be a valuable hit compound for the development of anticancer agents.  相似文献   

5.
Our team discovered a moderate SphK1 inhibitor, SAMS10 (IC50 = 9.8 μM), which was screened by computer-assisted screening. In this study, we developed a series of novel diaryl derivatives with improved antiproliferative activities by modifying the structure of the lead compound SAMS10. A total of 50 new compounds were synthesized. Among these compounds, the most potent compound, named CHJ04022Rb, has significant anticancer activity in melanoma A375 cell line (IC50 = 2.95 μM). Further underlying mechanism studies indicated that CHJ04022R exhibited inhibition effect against PI3K/NF-κB signaling pathways, inhibited the migration of A375 cells, promoted apoptosis and exerted antiproliferative effect by inducing G2/M phase arrest in A375 cells. Furthermore, acute toxicity experiment indicated CHJ04022R exhibited good safety in vivo. Additionally, it showed a dose-dependent inhibitory effect on the growth of xenograft tumor in nude mice. Therefore, CHJ04022R may be a potential candidate for the treatment of melanoma.  相似文献   

6.
In the current study, a simple in silico approach using free software was used with the experimental studies to optimize the antiproliferative activity and predict the potential mechanism of action of pyrrolizine-based Schiff bases. A compound library of 288 Schiff bases was designed based on compound 10, and a pharmacophore search was performed. Structural analysis of the top scoring hits and a docking study were used to select the best derivatives for the synthesis. Chemical synthesis and structural elucidation of compounds 16a–h were discussed. The antiproliferative activity of 16a–h was evaluated against three cancer (MCF7, A2780 and HT29, IC50 = 0.01–40.50 μM) and one normal MRC5 (IC50 = 1.27–24.06 μM) cell lines using the MTT assay. The results revealed the highest antiproliferative activity against MCF7 cells for 16g (IC50 = 0.01 μM) with an exceptionally high selectivity index of (SI = 578). Cell cycle analysis of MCF7 cells treated with compound 16g revealed a cell cycle arrest at the G2/M phase. In addition, compound 16g induced a dose-dependent increase in apoptotic events in MCF7 cells compared to the control. In silico target prediction of compound 16g showed six potential targets that could mediate these activities. Molecular docking analysis of compound 16g revealed high binding affinities toward COX-2, MAP P38α, EGFR, and CDK2. The results of the MD simulation revealed low RMSD values and high negative binding free energies for the two complexes formed between compound 16g with EGFR, and CDK2, while COX-2 was in the third order. These results highlighted a great potentiality for 16g to inhibit both CDK2 and EGFR. Taken together, the results mentioned above highlighted compound 16g as a potential anticancer agent.  相似文献   

7.
Pterostilbene, a natural metabolite of resveratrol, has been indicated as a potent anticancer molecule. Recently, several pterostilbene derivatives have been reported to exhibit better anticancer activities than that of the parent pterostilbene molecule. In the present study, a series of pterostilbene derivatives were designed and synthesized by the hybridization of pterostilbene, chalcone, and cinnamic acid. The cytotoxic effect of these hybrid molecules was determined using two oral cancer cell lines, HSC-3 and OECM-1. (E)-3-(2-((E)-4-Hydroxystyryl)-4,6-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (4d), with IC50 of 16.38 and 18.06 μM against OECM-1 and HSC-3, respectively, was selected for further anticancer mechanism studies. Results indicated that compound 4d effectively inhibited cell proliferation and induced G2/M cell cycle arrest via modulating p21, cyclin B1, and cyclin A2. Compound 4d ultimately induced cell apoptosis by reducing the expression of Bcl-2 and surviving. In addition, cleavage of PARP and caspase-3 were enhanced following the treatment of compound 4d with increased dose. To conclude, a number of pterostilbene derivatives were discovered to possess potent anticancer potentials. Among them, compound 4d was the most active, more active than the parent pterostilbene.  相似文献   

8.
Cancer is one of the main global health problems. In order to develop novel antitumor agents, we synthesized 3,4-dihydropyrimidine-2(1H)-one (DHPM) and 2,6-diaryl-substituted pyridine derivatives as potential antitumor structures and evaluated their cytotoxic effects against several cancer cell lines. An easy and convenient method is reported for the synthesis of these derivatives, employing cobalt ferrite (CoFe 2 O 4 @SiO 2 -SO 3 H) magnetic nanoparticles under microwave irradiation and solvent-free conditions. The structural characteristics of the prepared nanocatalyst were investigated by FTIR, XRD, SEM, and TGA techniques. In vitro cytotoxic effects of the synthesized products were assessed against the human breast adenocarcinoma cell line (MCF-7), gastric adenocarcinoma (AGS), and human embryonic kidney (HEK293) cells via MTT assay. The results indicated that compound 4r (DHPM derivative) was the most toxic molecule against the MCF-7 cell line (IC 50 of 0.17 μg/mL). Moreover, compounds 4j and 4r (DHPM derivatives) showed excellent cytotoxic activities against the AGS cell line, with an IC 50 of 4.90 and 4.97 μg/mL, respectively. Although they are pyridine derivatives, compounds 5g and 5m were more active against the MCF-7 cell line. Results showed that the candidate compounds exhibited low cytotoxicity against HEK293 cells. The kinesin Eg5 inhibitory potential of the candidate compounds was evaluated by molecular docking. The docking results showed that, among the pyridine derivatives, compound 5m had the most free energy of binding (–9.52 kcal/mol) and lowest Ki (0.105 μM), and among the pyrimidine derivatives, compound 4r had the most free energy of binding (–7.67 kcal/mol) and lowest Ki (2.39 μM). Ligand-enzyme affinity maps showed that compounds 4r and 5m had the potential to interact with the Eg5 binding site via H-bond interactions to GLU116 and GLY117 residues. The results of our study strongly suggest that DHPM and pyridine derivatives inhibit important tumorigenic features of breast and gastric cancer cells. Our results may be helpful in the further design of DHPMs and pyridine derivatives as potential anticancer agents.  相似文献   

9.
A series of novel coumarin-3-carboxamide derivatives were designed and synthesized to evaluate their biological activities. The compounds showed little to no activity against gram-positive and gram-negative bacteria but specifically showed potential to inhibit the growth of cancer cells. In particular, among the tested compounds, 4-fluoro and 2,5-difluoro benzamide derivatives (14b and 14e, respectively) were found to be the most potent derivatives against HepG2 cancer cell lines (IC50 = 2.62–4.85 μM) and HeLa cancer cell lines (IC50 = 0.39–0.75 μM). The activities of these two compounds were comparable to that of the positive control doxorubicin; especially, 4-flurobenzamide derivative (14b) exhibited low cytotoxic activity against LLC-MK2 normal cell lines, with IC50 more than 100 μM. The molecular docking study of the synthesized compounds revealed the binding to the active site of the CK2 enzyme, indicating that the presence of the benzamide functionality is an important feature for anticancer activity.  相似文献   

10.
In this study, two previously undescribed diterpenoids, (5R,10S,16R)-11,16,19-trihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-3,8,11,13-abietatetraene-7-one (1) and (5R,10S,16R)-11,16-dihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-4-carboxy-3,8,11,13-abietatetraene-7-one (2), and one known compound, the C13-nor-isoprenoid glycoside byzantionoside B (3), were isolated from the leaves of Clerodendrum infortunatum L. (Lamiaceae). Structures were established based on spectroscopic and spectrometric data and by comparison with literature data. The three terpenoids, along with five phenylpropanoids: 6′-O-caffeoyl-12-glucopyranosyloxyjasmonic acid (4), jionoside C (5), jionoside D (6), brachynoside (7), and incanoside C (8), previously isolated from the same source, were tested for their in vitro antidiabetic (α-amylase and α-glucosidase), anticancer (Hs578T and MDA-MB-231), and anticholinesterase activities. In an in vitro test against carbohydrate digestion enzymes, compound 6 showed the most potent effect against mammalian α-amylase (IC50 3.4 ± 0.2 μM) compared to the reference standard acarbose (IC50 5.9 ± 0.1 μM). As yeast α-glucosidase inhibitors, compounds 1, 2, 5, and 6 displayed moderate inhibitory activities, ranging from 24.6 to 96.0 μM, compared to acarbose (IC50 665 ± 42 μM). All of the tested compounds demonstrated negligible anticholinesterase effects. In an anticancer test, compounds 3 and 5 exhibited moderate antiproliferative properties with IC50 of 94.7 ± 1.3 and 85.3 ± 2.4 μM, respectively, against Hs578T cell, while the rest of the compounds did not show significant activity (IC50 > 100 μM).  相似文献   

11.
Alzheimer’s disease (AD) is a severe neurodegenerative disorder. AD is pathologically characterized by the formation of intracellular neurofibrillary tangles, and extracellular amyloid plaques which were comprised of amyloid-beta (Aβ) peptides. Aβ induces neurodegeneration by activating microglia, which triggers neurotoxicity by releasing various inflammatory mediators and reactive oxygen species (ROS). Nuclear factor-kappa B (NF-κB) is expressed in human tissues including the brain and plays an important role in Aβ-mediated neuronal inflammation. Thus, the identification of molecules that inhibit the NF-κB pathway is considered an attractive strategy for the treatment and prevention of AD. Isoorientin (3′,4′,5,7-Tetrahydroxy-6-C-glucopyranosyl flavone; ISO), which can be extracted from several plant species, such as Philostachys and Patrinia is known to have various pharmacological activities such as anticancer, antioxidant, and antibacterial activity. However, the effect of ISO on Aβ-mediated inflammation and apoptosis in the brain has yet to be elucidated. In the present study, we investigated whether ISO regulated Aβ-induced neuroinflammation in microglial cells and further explored the underlying mechanisms. Our results showed that ISO inhibited the expression of iNOS and COX-2 induced by Aβ25–35. And, it inhibited the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, ISO reduced the ROS production in Aβ25–35-induced BV2 cells and inhibited NF-κB activation. Furthermore, ISO blocked Aβ25–35-induced apoptosis of BV2 cells. Based on these findings, we suggest that ISO represents a promising therapeutic drug candidate for the treatment and prevention of AD.  相似文献   

12.
Hesperetin is a class of natural products with a wide range of sources and remarkable biological activities. In this study, we described the synthesis of a series of novel hesperetin derivatives and evaluated the in vitro antioxidant and antitumor activity of these compounds. Eleven novel compounds were synthesized in moderate yields. The compounds synthesized in this work exhibited antioxidant activities against DPPH and ABTS free radicals in a dose-dependent manner. Among them, compound 3f had the best antioxidant activity, with IC50 of 1.2 μM and 24 μM for DPPH and ABTS, respectively. The antitumor activity of the compounds against human cancer cell lines, such as breast MCF-7, liver HepG2, and cervical Hela, was determined by a standard 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Three compounds had moderate IC50 values. Interestingly, compound 3f had better biological activity than hesperetin, which matches the prediction by Maestro from Schrödinger. Therefore, the new hesperidin derivative is a promising drug for the treatment of cancer due to its effective antitumor activity. The results also suggested that the antitumor activities of hesperetin derivatives may be related to their antioxidant activities.  相似文献   

13.
This study represents the design and synthesis of a new set of hybrid and chimeric derivatives of 4,5-dihydro-4,4-dimethyl-1H-[1,2]dithiolo[3,4-c]quinoline-1-thiones, the structure of which the tricyclic fragment linearly bound or/and condensed with another heterocyclic fragment. Using the PASS Online software, among the previously synthesized and new derivatives of 1,2-dithiolo[3,4-c]quinoline-1-thione we identified 12 substances with pleiotropic activity, including chemoprotective and antitumor activity. All the synthesized derivatives were screened for their inhibitory assessment against a number of kinases. Compounds which exhibited prominent inhibition percentage in cells (>85%) were also examined for their inhibitory efficiency on human kinases via ELISA utilizing sorafenib as a reference standard to estimate their IC50 values. It was revealed that compounds 2a, 2b, 2c, and 2q displayed a significant inhibition JAK3 (IC50 = 0.36 μM, 0.38 μM, 0.41 μM, and 0.46 μM, respectively); moreover, compounds 2a and 2b displayed excellent activities against NPM1-ALK (IC50 = 0.54 μM, 0.25 μM, respectively), against cRAF[Y340D][Y341D], compound 2c showed excellent activity, and compound 2q showed weak activity (IC50 = 0.78 μM, 5.34 μM, respectively) (sorafenib IC50 = 0.78 μM, 0.43 μM, 1.95 μM, respectively). Thus, new promising preferred structures for the creation of drugs for the treatment of cancer and other multifactorial diseases in the future have been found.  相似文献   

14.
The purpose of this work is to investigate the protein kinase inhibitory activity of constituents from Acacia auriculiformis stem bark. Column chromatography and NMR spectroscopy were used to purify and characterize betulin from an ethyl acetate soluble fraction of acacia bark. Betulin, a known inducer of apoptosis, was screened against a panel of 16 disease-related protein kinases. Betulin was shown to inhibit Abelson murine leukemia viral oncogene homolog 1 (ABL1) kinase, casein kinase 1ε (CK1ε), glycogen synthase kinase 3α/β (GSK-3 α/β), Janus kinase 3 (JAK3), NIMA Related Kinase 6 (NEK6), and vascular endothelial growth factor receptor 2 kinase (VEGFR2) with activities in the micromolar range for each. The effect of betulin on the cell viability of doxorubicin-resistant K562R chronic myelogenous leukemia cells was then verified to investigate its putative use as an anti-cancer compound. Betulin was shown to modulate the mitogen-activated protein (MAP) kinase pathway, with activity similar to that of imatinib mesylate, a known ABL1 kinase inhibitor. The interaction of betulin and ABL1 was studied by molecular docking, revealing an interaction of the inhibitor with the ABL1 ATP binding pocket. Together, these data demonstrate that betulin is a multi-target inhibitor of protein kinases, an activity that can contribute to the anticancer properties of the natural compound and to potential treatments for leukemia.  相似文献   

15.
Arimisia annua L. is an important anticancer herb used in traditional Chinese medicine. The molecular basis underpinning the anticancer activity is complex and not fully understood, but the herbal polysaccharides, broadly recognised as having immunomodulatory, antioxidant and anticancer activities, are potential key active agents. To examine the functions of polysaccharides from A. annua, their immunomodulatory and antioxidant potentials were evaluated, as well as their structural characterization. The water-soluble polysaccharides (AAPs) were fractionated using size-exclusion chromatography to obtain three dominant fractions, AAP-1, AAP-2 and AAP-3, having molecular masses centered around 1684, 455 and 5.8kDa, respectively. The antioxidant potentials of the isolated polysaccharides were evaluated by measuring radical scavenging activities against DPPH (2,2-diphenyl-1-picrylhydrazyl radical), ABTS●+ (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid radical ion), and the OH (hydroxyl radical). AAP-1 displayed high antioxidant activities against these radicals, which were 68%, 73% and 78%, respectively. AAP-2 displayed lower scavenging activities than the other two fractions. Immunostimulatory activities of AAPs were measured using mouse macrophages. The three polysaccharide fractions displayed significant antioxidant activities and stimulated the production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). AAP-1 showed significant immunostimulatory activity (16-fold increase in the production of IL-6 compared to the control and 13-fold increase in the production of TNF-α) with low toxicity (>60% cell viability at 125 μg/mL concentration). Preliminary structural characterization of the AAPs was carried out using gas chromatography (GC) and FTIR techniques. The results indicate that AAP-1 and AAP-2 are pyranose-containing polysaccharides with β-linkages, and AAP-3 is a β-fructofuranoside. The results suggest that these polysaccharides are potential candidates for immunotherapy and cancer treatment.  相似文献   

16.
The role of metalloenzymes in tumor progression had broadened their application in cancer therapy. Of these, MMPs and CAs are validated druggable targets that share some pivotal signaling pathways. The majority of MMPs or CAs inhibitors are designed as single-target agents. Despite their transient efficacy, these agents are often susceptible to resistance. This set the stage to introduce dual inhibitors of correlated MMPs and CAs. The next step is expected to target the common vital signaling nodes as well. In this regard, VEGFR-2 is central to various tumorigenesis events involving both families, especially MMP-2 and CA II. Herein, we report simultaneous inhibition of MMP-2, CA II, and VEGFR-2 via rationally designed hybrid 1,2,4-triazolo[4,3-a]pyrimidinone acyclo C-nucleosides. The promising derivatives were nanomolar inhibitors of VEGFR-2 (8; IC50 = 5.89 nM, 9; IC50 = 10.52 nM) and MMP-2 (8; IC50 = 17.44 nM, 9; IC50 = 30.93 nM) and submicromolar inhibitors of CA II (8; IC50 = 0.21 µM, 9; IC50 = 0.36 µM). Docking studies predicted their binding modes into the enzyme active sites and the structural determinants of activity regarding substitution and regioselectivity. MTT assay demonstrated that both compounds were 12 folds safer than doxorubicin with superior anticancer activities against three human cancers recording single-digit nanomolar IC50, thus echoing their enzymatic activities. Up to our knowledge, this study introduces the first in class triazolopyrimidinone acyclo C-nucleosides VEGFR-2/MMP-2/CA II inhibitors that deserve further investigation.  相似文献   

17.
Novel 6-bromo-coumarin-ethylidene-hydrazonyl-thiazolyl and 6-bromo-coumarin-thiazolyl-based derivatives were synthesized. A quantitative structure activity relationship (QSAR) model with high predictive power r2 = 0.92, and RMSE = 0.44 predicted five compounds; 2b, 3b, 5a, 9a and 9i to have potential anticancer activities. Compound 2b achieved the best ΔG of –15.34 kcal/mol with an affinity of 40.05 pki. In a molecular dynamic study 2b showed an equilibrium at 0.8 Å after 3.5 ns, while flavopiridol did so at 0.5 Å after the same time (3.5 ns). 2b showed an IC50 of 0.0136 µM, 0.015 µM, and 0.054 µM against MCF-7, A-549, and CHO-K1 cell lines, respectively. The CDK4 enzyme assay revealed the significant CDK4 inhibitory activity of compound 2b with IC50 of 0.036 µM. The selectivity of the newly discovered lead compound 2b toward localization in tumor cells was confirmed by a radioiodination biological assay that was done via electrophilic substitution reaction utilizing the oxidative effect of chloramine-t. 131I-2b showed good in vitro stability up to 4 h. In solid tumor bearing mice, the values of tumor uptake reached a height of 5.97 ± 0.82%ID/g at 60 min p.i. 131I-2b can be considered as a selective radiotheranostic agent for solid tumors with promising anticancer activity.  相似文献   

18.
A series of novel synthetic substituted benzo[d]oxazole-based derivatives (5a–5v) exerted neuroprotective effects on β-amyloid (Aβ)-induced PC12 cells as a potential approach for the treatment of Alzheimer’s disease (AD). In vitro studies show that most of the synthesized compounds were potent in reducing the neurotoxicity of Aβ25-35-induced PC12 cells at 5 μg/mL. We found that compound 5c was non-neurotoxic at 30 μg/mL and significantly increased the viability of Aβ25-35-induced PC12 cells at 1.25, 2.5 and 5 μg/mL. Western blot analysis showed that compound 5c promoted the phosphorylation of Akt and glycogen synthase kinase (GSK-3β) and decreased the expression of nuclear factor-κB (NF-κB) in Aβ25-35-induced PC12 cells. In addition, our findings demonstrated that compound 5c protected PC12 cells from Aβ25-35-induced apoptosis and reduced the hyperphosphorylation of tau protein, and decreased the expression of receptor for AGE (RAGE), β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), inducible nitric oxide synthase (iNOS) and Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2) via Akt/GSK-3β/NF-κB signaling pathway. In vivo studies suggest that compound 5c shows less toxicity than donepezil in the heart and nervous system of zebrafish.  相似文献   

19.
The development of novel anticancer agents is essential to finding new ways to treat this disease, one of the deadliest diseases. Some marine organisms have proved to be important producers of chemically active compounds with valuable bioactive properties, including anticancer. Thus, the ocean has proved to be a huge source of bioactive compounds, making the discovery and study of these compounds a growing area. In the last few years, several compounds of marine origin, which include algae, corals, and sea urchins, have been isolated, studied, and demonstrated to possess anticancer properties. These compounds, mainly from securamines and sterols families, have been tested for cytotoxic/antiproliferative activity in different cell lines. Bioactive compounds isolated from marine organisms in the past 5 years that have shown anticancer activity, emphasizing the ones that showed the highest cytotoxic activity, such as securamines H and I, cholest-3β,5α,6β-triol, (E)-24-methylcholest-22-ene-3β,5α,6β-triol, 24-methylenecholesta-3β,5α,6β-triol, and 24-methylcholesta-3β,5α,6β-triol, will be discussed in this review. These studies reveal the possibility of new compounds of marine origin being used as new therapeutic agents or as a source of inspiration to develop new therapeutic agents.  相似文献   

20.
Chalcone is a common scaffold found in many biologically active compounds. The chalcone scaffold was also frequently utilized to design novel anticancer agents with potent biological efficacy. Aiming to continue the research of effective chalcone derivatives to treat cancers with potent anticancer activity, fourteen amino chalcone derivatives were designed and synthesized. The antiproliferative activity of amino chalcone derivatives was studied in vitro and 5-Fu as a control group. Some of the compounds showed moderate to good activity against three human cancer cells (MGC-803, HCT-116 and MCF-7 cells) and compound 13e displayed the best antiproliferative activity against MGC-803 cells, HCT-116 cells and MCF-7 cells with IC50 values of 1.52 μM (MGC-803), 1.83 μM (HCT-116) and 2.54 μM (MCF-7), respectively which was more potent than the positive control (5-Fu). Further mechanism studies were explored. The results of cell colony formatting assay suggested compound 10e inhibited the colony formation of MGC-803 cells. DAPI fluorescent staining and flow cytometry assay showed compound 13e induced MGC-803 cells apoptosis. Western blotting experiment indicated compound 13e induced cell apoptosis via the extrinsic/intrinsic apoptosis pathway in MGC-803 cells. Therefore, compound 13e might be a valuable lead compound as antiproliferative agents and amino chalcone derivatives worth further effort to improve amino chalcone derivatives’ potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号