首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous research, we showed that ‘texts that tell a story’ exhibit a statistical structure that is not Maxwell–Boltzmann but Bose–Einstein. Our explanation is that this is due to the presence of ‘indistinguishability’ in human language as a result of the same words in different parts of the story being indistinguishable from one another, in much the same way that ’indistinguishability’ occurs in quantum mechanics, also there leading to the presence of Bose–Einstein rather than Maxwell–Boltzmann as a statistical structure. In the current article, we set out to provide an explanation for this Bose–Einstein statistics in human language. We show that it is the presence of ‘meaning’ in ‘texts that tell a story’ that gives rise to the lack of independence characteristic of Bose–Einstein, and provides conclusive evidence that ‘words can be considered the quanta of human language’, structurally similar to how ‘photons are the quanta of electromagnetic radiation’. Using several studies on entanglement from our Brussels research group, we also show, by introducing the von Neumann entropy for human language, that it is also the presence of ‘meaning’ in texts that makes the entropy of a total text smaller relative to the entropy of the words composing it. We explain how the new insights in this article fit in with the research domain called ‘quantum cognition’, where quantum probability models and quantum vector spaces are used in human cognition, and are also relevant to the use of quantum structures in information retrieval and natural language processing, and how they introduce ‘quantization’ and ‘Bose–Einstein statistics’ as relevant quantum effects there. Inspired by the conceptuality interpretation of quantum mechanics, and relying on the new insights, we put forward hypotheses about the nature of physical reality. In doing so, we note how this new type of decrease in entropy, and its explanation, may be important for the development of quantum thermodynamics. We likewise note how it can also give rise to an original explanatory picture of the nature of physical reality on the surface of planet Earth, in which human culture emerges as a reinforcing continuation of life.  相似文献   

2.
This paper explores a statistical mechanics approach as a means to better understand specific land cover changes on a continental scale. Integrated assessment models are used to calculate the impact of anthropogenic emissions via the coupling of technoeconomic and earth/atmospheric system models and they have often overlooked or oversimplified the evolution of land cover change. Different time scales and the uncertainties inherent in long term projections of land cover make their coupling to integrated assessment models difficult. The mainstream approach to land cover modelling is rule-based methodology and this necessarily implies that decision mechanisms are often removed from the physical geospatial realities, therefore a number of questions remain: How much of the predictive power of land cover change can be linked to the physical situation as opposed to social and policy realities? Can land cover change be understood using a statistical approach that includes only economic drivers and the availability of resources? In this paper, we use an energy transition paradigm as a means to predict this change. A cost function is applied to developed land covers for urban and agricultural areas. The counting of area is addressed using specific examples of a Pólya process involving Maxwell–Boltzmann and Bose–Einstein statistics. We apply an iterative counting method and compare the simulated statistics with fractional land cover data with a multi-national database. An energy level paradigm is used as a basis in a flow model for land cover change. The model is compared with tabulated land cover change in Europe for the period 1990–2000. The model post-predicts changes for each nation. When strong extraneous factors are absent, the model shows promise in reproducing data and can provide a means to test hypothesis for the standard rules-based algorithms.  相似文献   

3.
    
We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate space. Those physical quantities were determined from a robust statistical study for the stationary density profiles of the interacting condensate. Localization was identified for each lattice type as a function of the potential depth. Our analysis revealed a range of the potential depths for which the condensate density becomes localized, from partially at random lattice sites to fully in a single site. We found that localization in the case of five-fold rotational symmetry appears for (6ER,9ER), while it occurs in the interval (12ER,15ER) for octagonal and dodecagonal symmetries.  相似文献   

4.
    
We propose a multi-qubit Bose–Einstein-condensate (BEC) trap as a platform for studies of quantum statistical phenomena in many-body interacting systems. In particular, it could facilitate testing atomic boson sampling of the excited-state occupations and its quantum advantage over classical computing in a full, controllable and clear way. Contrary to a linear interferometer enabling Gaussian boson sampling of non-interacting non-equilibrium photons, the BEC trap platform pertains to an interacting equilibrium many-body system of atoms. We discuss a basic model and the main features of such a multi-qubit BEC trap.  相似文献   

5.
    
Atomtronics is a relatively new subfield of atomic physics that aims to realize the device behavior of electronic components in ultracold atom-optical systems. The fact that these systems are coherent makes them particularly interesting since, in addition to current, one can impart quantum states onto the current carriers themselves or perhaps perform quantum computational operations on them. After reviewing the fundamental ideas of this subfield, we report on the theoretical and experimental progress made towards developing externally-driven and closed loop devices. The functionality and potential applications for these atom analogs to electronic and spintronic systems is also discussed.  相似文献   

6.
    
The thermodynamic properties of the Robin quantum well with extrapolation length Λ are analyzed theoretically both for the canonical and two grand canonical ensembles, with special attention being paid to the situation when the energies of one or two lowest‐lying states are split off from the rest of the spectrum by the large gap that is controlled by the varying Λ. For the single split‐off level, which exists for the geometry with the equal magnitudes but opposite signs of the Robin distances on the confining interfaces, the heat capacity of the canonical averaging is a nonmonotonic function of the temperature T with its salient maximum growing to infinity as for the decreasing to zero extrapolation length and its position being proportional to . The specific heat per particle of the Fermi–Dirac ensemble depends nonmonotonically on the temperature too, with its pronounced extremum being foregone on the T axis by the plateau, whose value at the dying Λ is , with N being the number of fermions. The maximum of , similar to the canonical averaging, unrestrictedly increases as Λ goes to zero and is largest for one particle. The most essential property of the Bose–Einstein ensemble is the formation, for a growing number of bosons, of the sharp asymmetric shape on the characteristics, which is more protrusive at the smaller Robin distances. This cusp‐like structure is a manifestation of the phase transition to the condensate state. For two split‐off orbitals, one additional maximum emerges whose position is shifted to colder temperatures with the increase of the energy gap between these two states and their higher‐lying counterparts and whose magnitude approaches a Λ‐independent value. All these physical phenomena are qualitatively and quantitatively explained by the variation of the energy spectrum by the Robin distance. Parallels with other structures are drawn and similarities and differences between them are highlighted. Generalization to higher dimensions is also provided.  相似文献   

7.
    
This paper shows that, for a large number of particles and for distinguishable and non-interacting identical particles, convergence to equiprobability of the W microstates of the famous Boltzmann–Planck entropy formula S = k log(W) is proved by the Shannon–McMillan theorem, a cornerstone of information theory. This result further strengthens the link between information theory and statistical mechanics.  相似文献   

8.
In this paper limiting distribution functions of field and density fluctuations are explicitly and rigorously computed for the different phases of the Bose gas. Several Gaussian and non-Gaussian distribution functions are obtained and the dependence on boundary conditions is explicitly derived. The model under consideration is the free Bose gas subjected to attractive boundary conditions, such boundary conditions yield a gap in the spectrum. The presence of a spectral gap and the method of the coupled thermodynamic limits are the new aspects of this work, leading to new scaling exponents and new fluctuation distribution functions.  相似文献   

9.
Recursion formulae of the N-particle partition function, the occupation numbers and its fluctuations are given using the single-particle partition function. Exact results are presented for fermions and bosons in a common one-dimensional harmonic oscillator potential, for the three-dimensional harmonic oscillator approximations are tested. Applications to excited nuclei and Bose–Einstein condensation are discussed.  相似文献   

10.
    
Classical option pricing schemes assume that the value of a financial asset follows a geometric Brownian motion (GBM). However, a growing body of studies suggest that a simple GBM trajectory is not an adequate representation for asset dynamics, due to irregularities found when comparing its properties with empirical distributions. As a solution, we investigate a generalisation of GBM where the introduction of a memory kernel critically determines the behaviour of the stochastic process. We find the general expressions for the moments, log-moments, and the expectation of the periodic log returns, and then obtain the corresponding probability density functions using the subordination approach. Particularly, we consider subdiffusive GBM (sGBM), tempered sGBM, a mix of GBM and sGBM, and a mix of sGBMs. We utilise the resulting generalised GBM (gGBM) in order to examine the empirical performance of a selected group of kernels in the pricing of European call options. Our results indicate that the performance of a kernel ultimately depends on the maturity of the option and its moneyness.  相似文献   

11.
    
We consider the dynamics of two-dimensional interacting ultracold bosons triggered by suddenly switching on an artificial gauge field. The system is initialized in the ground state of a harmonic trapping potential. As a function of the strength of the applied artificial gauge field, we analyze the emergent dynamics by monitoring the angular momentum, the fragmentation as well as the entropy and variance of the entropy of absorption or single-shot images. We solve the underlying time-dependent many-boson Schrödinger equation using the multiconfigurational time-dependent Hartree method for indistinguishable particles (MCTDH-X). We find that the artificial gauge field implants angular momentum in the system. Fragmentation—multiple macroscopic eigenvalues of the reduced one-body density matrix—emerges in sync with the dynamics of angular momentum: the bosons in the many-body state develop non-trivial correlations. Fragmentation and angular momentum are experimentally difficult to assess; here, we demonstrate that they can be probed by statistically analyzing the variance of the image entropy of single-shot images that are the standard projective measurement of the state of ultracold atomic systems.  相似文献   

12.
    
With the aim of improving the reconstruction of stochastic evolution equations from empirical time-series data, we derive a full representation of the generator of the Kramers–Moyal operator via a power-series expansion of the exponential operator. This expansion is necessary for deriving the different terms in a stochastic differential equation. With the full representation of this operator, we are able to separate finite-time corrections of the power-series expansion of arbitrary order into terms with and without derivatives of the Kramers–Moyal coefficients. We arrive at a closed-form solution expressed through conditional moments, which can be extracted directly from time-series data with a finite sampling intervals. We provide all finite-time correction terms for parametric and non-parametric estimation of the Kramers–Moyal coefficients for discontinuous processes which can be easily implemented—employing Bell polynomials—in time-series analyses of stochastic processes. With exemplary cases of insufficiently sampled diffusion and jump-diffusion processes, we demonstrate the advantages of our arbitrary-order finite-time corrections and their impact in distinguishing diffusion and jump-diffusion processes strictly from time-series data.  相似文献   

13.
    
We study a dilute granular gas immersed in a thermal bath made of smaller particles with masses not much smaller than the granular ones in this work. Granular particles are assumed to have inelastic and hard interactions, losing energy in collisions as accounted by a constant coefficient of normal restitution. The interaction with the thermal bath is modeled by a nonlinear drag force plus a white-noise stochastic force. The kinetic theory for this system is described by an Enskog–Fokker–Planck equation for the one-particle velocity distribution function. To get explicit results of the temperature aging and steady states, Maxwellian and first Sonine approximations are developed. The latter takes into account the coupling of the excess kurtosis with the temperature. Theoretical predictions are compared with direct simulation Monte Carlo and event-driven molecular dynamics simulations. While good results for the granular temperature are obtained from the Maxwellian approximation, a much better agreement, especially as inelasticity and drag nonlinearity increase, is found when using the first Sonine approximation. The latter approximation is, additionally, crucial to account for memory effects such as Mpemba and Kovacs-like ones.  相似文献   

14.
    
In this paper, we study the concomitants of dual generalized order statistics (and consequently generalized order statistics) when the parameters γ1,,γn are assumed to be pairwise different from Huang–Kotz Farlie–Gumble–Morgenstern bivariate distribution. Some useful recurrence relations between single and product moments of concomitants are obtained. Moreover, Shannon’s entropy and the Fisher information number measures are derived. Finally, these measures are extensively studied for some well-known distributions such as exponential, Pareto and power distributions. The main motivation of the study of the concomitants of generalized order statistics (as an important practical kind to order the bivariate data) under this general framework is to enable researchers in different fields of statistics to use some of the important models contained in these generalized order statistics only under this general framework. These extended models are frequently used in the reliability theory, such as the progressive type-II censored order statistics.  相似文献   

15.
    
The lattice Boltzmann method, now widely used for a variety of applications, has also been extended to model multiphase flows through different formulations. While already applied to many different configurations in low Weber and Reynolds number regimes, applications to higher Weber/Reynolds numbers or larger density/viscosity ratios are still the topic of active research. In this study, through a combination of a decoupled phase-field formulation—the conservative Allen–Cahn equation—and a cumulant-based collision operator for a low-Mach pressure-based flow solver, we present an algorithm that can be used for higher Reynolds/Weber numbers. The algorithm was validated through a variety of test cases, starting with the Rayleigh–Taylor instability in both 2D and 3D, followed by the impact of a droplet on a liquid sheet. In all simulations, the solver correctly captured the flow dynamics andmatched reference results very well. As the final test case, the solver was used to model droplet splashing on a thin liquid sheet in 3D with a density ratio of 1000 and kinematic viscosity ratio of 15, matching the water/air system at We = 8000 and Re = 1000. Results showed that the solver correctly captured the fingering instabilities at the crown rim and their subsequent breakup, in agreement with experimental and numerical observations reported in the literature.  相似文献   

16.
    
In physics, communication theory, engineering, statistics, and other areas, one of the methods of deriving distributions is the optimization of an appropriate measure of entropy under relevant constraints. In this paper, it is shown that by optimizing a measure of entropy introduced by the second author, one can derive densities of univariate, multivariate, and matrix-variate distributions in the real, as well as complex, domain. Several such scalar, multivariate, and matrix-variate distributions are derived. These include multivariate and matrix-variate Maxwell–Boltzmann and Rayleigh densities in the real and complex domains, multivariate Student-t, Cauchy, matrix-variate type-1 beta, type-2 beta, and gamma densities and their generalizations.  相似文献   

17.
Under some strong cutoff conditions on collision kernels, global existence, local stability, entropy identity, conservation of energy, and moment production estimates are proven for isotropic solutions of a modified (quantum effect) Boltzmann equation for spatially homogeneous gases of Bose–Einstein particles (BBE). Then applying these results with the biting-weak convergence, some results on the long-time behavior of the conservative isotropic solutions of the BBE equation are obtained, including the velocity concentration at very low temperatures and the tendency toward equilibrium states at very high temperatures.  相似文献   

18.
    
I numerically simulate and compare the entanglement of two quanta using the conventional formulation of quantum mechanics and a time-symmetric formulation that has no collapse postulate. The experimental predictions of the two formulations are identical, but the entanglement predictions are significantly different. The time-symmetric formulation reveals an experimentally testable discrepancy in the original quantum analysis of the Hanbury Brown–Twiss experiment, suggests solutions to some parts of the nonlocality and measurement problems, fixes known time asymmetries in the conventional formulation, and answers Bell’s question “How do you convert an ’and’ into an ’or’?”  相似文献   

19.
    
A solvable model of a periodically driven trapped mixture of Bose–Einstein condensates, consisting of N1 interacting bosons of mass m1 driven by a force of amplitude fL,1 and N2 interacting bosons of mass m2 driven by a force of amplitude fL,2, is presented. The model generalizes the harmonic-interaction model for mixtures to the time-dependent domain. The resulting many-particle ground Floquet wavefunction and quasienergy, as well as the time-dependent densities and reduced density matrices, are prescribed explicitly and analyzed at the many-body and mean-field levels of theory for finite systems and at the limit of an infinite number of particles. We prove that the time-dependent densities per particle are given at the limit of an infinite number of particles by their respective mean-field quantities, and that the time-dependent reduced one-particle and two-particle density matrices per particle of the driven mixture are 100% condensed. Interestingly, the quasienergy per particle does not coincide with the mean-field value at this limit, unless the relative center-of-mass coordinate of the two Bose–Einstein condensates is not activated by the driving forces fL,1 and fL,2. As an application, we investigate the imprinting of angular momentum and its fluctuations when steering a Bose–Einstein condensate by an interacting bosonic impurity and the resulting modes of rotations. Whereas the expectation values per particle of the angular-momentum operator for the many-body and mean-field solutions coincide at the limit of an infinite number of particles, the respective fluctuations can differ substantially. The results are analyzed in terms of the transformation properties of the angular-momentum operator under translations and boosts, and as a function of the interactions between the particles. Implications are briefly discussed.  相似文献   

20.
    
For the formation of a proto-tissue, rather than a protocell, the use of reactant dynamics in a finite spatial region is considered. The framework is established on the basic concepts of replication, diversity, and heredity. Heredity, in the sense of the continuity of information and alike traits, is characterized by the number of equivalent patterns conferring viability against selection processes. In the case of structural parameters and the diffusion coefficient of ribonucleic acid, the formation time ranges between a few years to some decades, depending on the spatial dimension (fractional or not). As long as equivalent patterns exist, the configuration entropy of proto-tissues can be defined and used as a practical tool. Consequently, the maximal diversity and weak fluctuations, for which proto-tissues can develop, occur at the spatial dimension 2.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号