首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Misbah Sultan 《Chemical Papers》2018,72(10):2375-2395
The biomaterials are intended to augment or replace the function of tissues or organs in human body. Every year millions of people require soft- or hard-tissue regeneration worldwide. Polymers and their composites are a large class of biomaterials appreciated for tissue regeneration. Polyurethane (PUR) is an organic synthetic multifunctional polymer with established biomedical applications. The hydroxyapatite (HA) is one of the biocompatible ceramic materials similar to natural bone material. The amalgamation of hydroxyapatite with polyurethane enhances the bioactivity of final product along with the combination of individual properties. Here, we review the synthesis, characterization, and applications studies of HA/PUR-based biomaterials. We initiate this review with a brief and representative compilation of the chemical composition and methods of preparation for HA/PUR biomaterials. Then, moving ahead, first, we review the simple HA/PUR biomaterials and use of PUR templates. Second, we review the significance of modified HA and PUR in these biomaterials. Third, we discuss the potential of bio-based PUR and inclusion of third constituent in the HA/PUR biomaterials. Then, we appraise the involvement of trace nutrient in deposition of HA on PUR scaffolds. Finally, we consider the other expedient applications of HA/PUR composites such as drug delivery system and sorbent of pollutants.  相似文献   

2.
《先进技术聚合物》2018,29(2):687-700
Despite the significant efforts in the synthesis of new polymers, the mechanical properties of polymer matrices can be considered modest in most cases, which limits their application in demanding areas. The isolation of graphene and evaluation of its outstanding properties, such as high thermal conductivity, superior mechanical properties, and high electronic transport, have attracted academic and industrial interest, and opened good perspectives for the integration of graphene as a filler in polymer matrices to form advanced multifunctional composites. Graphene‐based nanomaterials have prompted the development of flexible nanocomposites for emerging applications that require superior mechanical, thermal, electrical, optical, and chemical performance. These multifunctional nanocomposites may be tailored to synergistically combine the characteristics of both components if proper structural and interfacial organization is achieved. The investigations carried out in this aim have combined graphene with different polymers, leading to a variety of graphene‐based nanocomposites. The extensive research on graphene and its functionalization, as well as polymer graphene composites, aiming at applications in the biomedical field, are reviewed in this paper. An overview of the polymer matrices adequate for the biomedical area and the production techniques of graphene composites is presented. Finally, the applications of such nanocomposites in the biomedical field, particularly in drug delivery, wound healing, and biosensing, are discussed.  相似文献   

3.
Magnetic nanocomposites based on hydroxyapatite were prepared by a one-step process using the hydrothermal coprecipitation method to sinter iron oxides (Fe3O4 and γ-Fe2O3). The possibility of expanding the proposed technique for the synthesis of magnetic composite with embedded biologically active substance (BAS) of the 2-arylaminopyrimidine group was shown. The composition, morphology, structural features, and magnetic characteristics of the nanocomposites synthesized with and without BAS were studied. The introduction of BAS into the composite synthesis resulted in minor changes in the structural and physical properties. The specificity of the chemical bonds between BAS and the hydroxyapatite-magnetite core was revealed. The kinetics of the BAS release in a solution simulating the stomach environment was studied. The cytotoxicity of (HAP)FexOy and (HAP)FexOy + BAS composites was studied in vitro using the primary culture of human liver carcinoma cells HepG2. The synthesized magnetic composites with BAS have a high potential for use in the biomedical field, for example, as carriers for magnetically controlled drug delivery and materials for bone tissue engineering.  相似文献   

4.
Porous ceramic materials based on calcium phosphate compounds (CFC) have been studied and developed for several biomedical applications such as implants, controlled drug delivery, and radioactive sources for brachytherapy. Two kinds of hydroxyapatite (HAp) powders and their ceramic bodies were characterized. In this study, non-radioactive iodine was incorporated in two types of biodegradable hydroxyapatite-based porous matrices (HA and HACL). The results reveal that both systems present a high capacity of incorporating iodine. The quantity of incorporated iodine was measured by neutron activation analysis (NAA). The porous ceramic matrices based on hydroxyapatite demonstrated a great potential for uses in low dose rate (LDR) brachytherapy.  相似文献   

5.
纳米羟基磷灰石/胶原复合材料制备方法比较研究   总被引:4,自引:0,他引:4  
低温下,通过将水热合成的纳米羟基磷灰石浆料与中性胶原溶胶共混和在中性胶原中原位形成羟基磷灰石两种方法制备羟基磷灰石/胶原复合材料,采用XRD、FTIR、扫描电镜、透射电镜和力学性能测试等方法对两种复合材料的特性进行了表征。通过对两种方法制备的复合材料的特性进行比较,发现两种方法均制备得到了纳米羟基磷灰石/胶原复合材料,复合材料在晶相组成、化学组成、纳米羟基磷灰石晶体尺寸、胶原纤维的结构等方面都与天然骨相似。但原位合成纳米羟基磷灰石晶体的结晶度比水热合成的纳米羟基磷灰石更接近于自然骨,原位合成的羟基磷灰石/胶原复合材料的均匀性、界面结合紧密度、力学性能等方面均优于共混法。原位合成法是改善纳米羟基磷灰石/胶原复合材料均匀性和力学性能的有效方法。  相似文献   

6.
Polyvinyl alcohol (PVA) ferrogels were easily obtained through a one-pot technique that involves co-precipitation of iron salts in the presence of a PVA solution, followed by freezing?Cthawing cycles of the resulting nanoparticles (NPs) dispersions. The protecting effect of PVA enabled the synthesis of small magnetic NPs that did not agglomerate in the initial solution allowing the synthesis of well-dispersed ferrogels by physical cross-linking. Physical properties of the physically cross-linked ferrogels, as swelling ability, melting temperature, and crystallinity, were barely affected by the presence of NPs, presenting similar or improved values when compared with chemically cross-linked systems. Ferrogels showed superparamagnetic properties at room temperature that combined with the absence of toxic residues arising from cross-linking agents make them ideal candidates for their use in biomedical applications (artificial muscles, drug delivery, and sensors among others).  相似文献   

7.
Copolymer network hydrogels were prepared by gamma irradiation of aqueous solutions of poly(vinyl pyrrolidone) (PVP) and acrylic acid monomer (AAc). The composition of the final hydrogels compared to the composition of the initial preparation solutions of hydrogels was determined. The chemical structure and nature of bonding was characterized by IR spectroscopy analysis, while the thermal durability of the prepared hydrogels was assessed by thermogravimetric analysis (TGA). The kinetic swelling in water and the pH-sensitivity of PVP/AAc copolymer hydrogels was studied. The drug release properties of PVP/AAc hydrogels taking methyl orange indicator as a drug model was investigated. The IR spectra indicate the formation of copolymer networks, whereas the TGA study showed that the PVP/AAc hydrogels possess higher thermal stability than pure PAAc and lower than PVP hydrogels. The kinetic swelling in water showed that all the hydrogels reached equilibrium after 24 h and that the degree of swelling increases with increasing the ratio of AAc in the initial feeding solutions. It was found that the degree of swelling of PVP/AAc hydrogels increases greatly within the pH range 4-7 depending on composition.  相似文献   

8.
The purpose of this work was to compare hydroxyapatite (HAP) and composites of HAP, HAP with chitosan (CS), and HAP with poly(vinyl pyrrolidone) (PVP), in terms of their particle size and morphology, using different methods, such as Coulter counter analysis, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Although many researchers have studied HAP and CS/HAP and PVP/HAP composites extensively, there is no evidence of a comparative study of their particle sizes. For this reason, different complementary methods have been used so as to provide a more complete image of final product properties — particle size — from the perspective of possible applications. The syntheses of HAP and HAP with polymer nanoparticles were carried out employing a precipitation method. Variation in particle size with synthesis time and influence of the reactants’ concentration on the materials’ preparation were systematically explored. Crystallite size calculated from XRD data revealed nanosized particles of HAP, CS/HAP, and PVP/HAP materials in the range of 2.5–9.2 nm. Coulter counter analysis revealed mean particle sizes of one thousand orders of magnitude larger, confirming that this technique measures agglomerates, not individual particles. In addition, the particles’ morphology and an assessment of their binding mode were completed by TEM measurements.  相似文献   

9.
Journal of Thermal Analysis and Calorimetry - New biodegradable and biocompatible composites are continuously developed for biomedical applications (e.g., from drug delivery devices to tissue...  相似文献   

10.
In recent years, intelligent hydrogels which can change their swelling behavior and other properties in response to environmental stimuli such as temperature, pH, solvent composition and electric fields, have attracted great interest. The hydrogels based on polysaccharides incorporated with thermo-responsive polymers have shown unique properties such as biocompatibility, biodegradability, and biological functions in addition to the stimuli-responsive characters. These "smart" hydrogels exhibit single or multiple stimuli-responsive characters which could be used in biomedical applications, including controlled drug delivery, bioengineering or tissue engineering. This review focuses on the recent developments and future trends dealing with stimuli-responsive hydrogels based on grafting/blending of polysaccharides such as chitosan, alginate, cellulose, dextran and their derivatives with thermo-sensitive polymers. This review also screens the current applications of these hydrogels in the fields of drug delivery, tissue engineering and wound healing.  相似文献   

11.
Conductive hydrogel, with electroconductive properties and high water content in a three-dimensional structure is prepared by incorporating conductive polymers, conductive nanoparticles, or other conductive elements, into hydrogel systems through various strategies. Conductive hydrogel has recently attracted extensive attention in the biomedical field. Using different conductivity strategies, conductive hydrogel can have adjustable physical and biochemical properties that suit different biomedical needs. The conductive hydrogel can serve as a scaffold with high swelling and stimulus responsiveness to support cell growth in vitro and to facilitate wound healing, drug delivery and tissue regeneration in vivo. Conductive hydrogel can also be used to detect biomolecules in the form of biosensors. In this review, we summarize the current design strategies of conductive hydrogel developed for applications in the biomedical field as well as the perspective approach for integration with biofabrication technologies.  相似文献   

12.
Fabrication of biodegradable composites applicable as hard tissue substitutes consisting of poly(ε‐caprolactone fumarate) (PCLF), methacrylic acid (MAA), and hydroxyapatite (HA) was investigated. PCLF macromers were synthesized by reaction of PCL diol with fumaryl chloride in the presence of propylene oxide and characterized by gel permeation chromatography, FTIR, and 1H NMR spectroscopy. Composites were fabricated by incorporating HA as inorganic filler in PCLF matrix which followed by thermal curing of the composition using benzoyl peroxide and MAA as a free radical initiator and reactive diluent, respectively. Uniform distribution of the fine ceramic phase in the polymer matrix was elucidated by scanning electron microscopy. The effects of the initial macromer molecular weight and the filler volume fraction on mechanical properties and cytotoxicity of the composites were also examined. Significant enhancement in the mechanical properties was observed upon increasing HA content and/or initial PCLF molecular weight. The biocompatibility of the specimens was also improved with increasing ceramic phase. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Three‐dimensional (3D) hydroxyapatite (HAP) hierarchical nanostructures, in particular hollow nanostructures, have attracted much attention owing to their potential applications in many biomedical fields. Herein, we report a rapid microwave‐assisted hydrothermal synthesis of a variety of hydroxyapatite hierarchical nanostructures that are constructed by the self‐assembly of nanorods or nanosheets as the building blocks, including HAP nanorod‐assembled hierarchical hollow microspheres (HA‐NRHMs), HAP nanorod‐assembled hierarchical microspheres (HA‐NRMs), and HAP nanosheet‐assembled hierarchical microspheres (HA‐NSMs) by using biocompatible biomolecule pyridoxal‐5′‐phosphate (PLP) as a new organic phosphorus source. The PLP molecules hydrolyze to produce phosphate ions under microwave‐hydrothermal conditions, and the phosphate ions react with calcium ions to form HAP nanorods or nanosheets; then, these nanorods or nanosheets self‐assemble to form 3D HAP hierarchical nanostructures. The preparation method reported herein is time‐saving, with microwave heating times as short as 5 min. The HA‐NRHMs consist of HAP nanorods as the building units, with an average diameter of about 50 nm. The effects of the experimental conditions on the morphology and crystal phase of the products are investigated. The hydrolysis of PLP under microwave‐hydrothermal conditions and the important role of PLP in the formation of 3D HAP hierarchical nanostructures are investigated and a possible formation mechanism is proposed. The products are explored for potential applications in protein adsorption and drug delivery. Our experimental results indicate that the HA‐NRHMs have high drug/protein‐loading capacity and sustained drug‐release behavior. Thus, the as‐prepared HA‐NRHMs are promising for applications in drug delivery and protein adsorption.  相似文献   

14.
Electrospinning is a well-known technique since 1544 to fabricate nanofibers using different materials like polymers, metals oxides, proteins, and many more. In recent years, electrospinning has become the most popular technique for manufacturing nanofibers due to its ease of use and economic viability. Nanofibers have remarkable properties like high surface-to-volume ratio, variable pore size distribution (10–100 nm), high porosity, low density, and are suitable for surface functionalization. Therefore, electrospun nanofibers have been utilized for numerous applications in the pharmaceutical and biomedical field like tissue engineering, scaffolds, grafts, drug delivery, and so on. In this review article, we will be focusing on the versatility, current scenario, and future endeavors of electrospun nanofibers for various biomedical applications. This review discusses the properties of nanofibers, the background of the electrospinning technique, and its emergence in chronological order. It also covers the various types of electrospinning methods and their mechanism, further elaborating the factors affecting the properties of nanofibers, and applications in tissue engineering, drug delivery, nanofibers as biosensor, skin cancer treatment, and magnetic nanofibers.  相似文献   

15.
天然多糖海藻酸钠制备的水凝胶具有优越的生物相容性和生物组织相似性,作为生物医用材料在药物控制释放、组织工程支架、抗菌材料及创伤敷料等领域发挥着越来越大的作用。本文在介绍海藻酸钠物化性质的基础上,重点综述了非共价键交联(静电作用、氢键、范德华力、亲疏水作用等)海藻酸钠水凝胶的制备方法以及性能表征方法,最后讨论了制备方法及性能表征研究中的一些需要解决的问题。  相似文献   

16.
生物模板法制备木材陶瓷   总被引:4,自引:0,他引:4  
罗民  高积强  乔冠军  金志浩 《化学进展》2008,20(6):989-1000
生物模板法是一种制备具有生物形貌特点的结构和功能材料的新方法。由于木材组织结构方面的独特性,制备其多级孔结构的木材生态陶瓷在探索特殊微观结构和性能之间的关系方面有着重大的意义。本文总结了生物模板法制备陶瓷材料技术的发展现状,并且指出了各种工艺的优缺点,着重介绍了木材陶瓷的发展历史、制备方法、机理和性能,概述了木材陶瓷在骨移植材料和催化材料方面的应用和发展前景。  相似文献   

17.
Carbon nanomaterials have attracted researchers in pharmaceutical applications due to their outstanding properties and flexible dimensional structures. Carbon nanomaterials (CNMs) have electrical properties, high thermal surface area, and high cellular internalization, making them suitable for drug and gene delivery, antioxidants, bioimaging, biosensing, and tissue engineering applications. There are various types of carbon nanomaterials including graphene, carbon nanotubes, fullerenes, nanodiamond, quantum dots and many more that have interesting applications in the future. The functionalization of the carbon nanomaterial surface could modify its chemical and physical properties, as well as improve drug loading capacity, biocompatibility, suppress immune response and have the ability to direct drug delivery to the targeted site. Carbon nanomaterials could also be fabricated into composites with proteins and drugs to reduce toxicity and increase effectiveness in the pharmaceutical field. Thus, carbon nanomaterials are very effective for applications in pharmaceutical or biomedical systems. This review will demonstrate the extraordinary properties of nanocarbon materials that can be used in pharmaceutical applications.  相似文献   

18.
Fluidinova, a recent start‐up high technology engineering company, has developed and is now commercializing a novel continuous industrial reactor NETmix for the manufacture of high added value products, such as nanomaterials, microemulsions, and pharmaceutical products. Through this technology, Fluidinova, in cooperation with Instituto de Engenharia Biomédica, has developed and patented the industrial process for the synthesis of a new high quality product consisting of hydroxyapatite nanoparticles with extremely high purity and crystallinity to be used as biocompatible nanomaterial for biomedical and pharmaceutical applications, to improve the quality of the already existing hydroxyapatite based medical devices, such as bone grafts, coated implants, and drug delivery systems.  相似文献   

19.
Hydrogels are cross‐linked three‐dimensional polymeric networks that play a vital role in solving the pharmacological and clinical limitations of the existing systems due to their unique physical properties such as affinity for biological fluids, tunable porous nature, high water content, ease of preparation, flexibility, and biocompatibility. Hydrogel also mimics the living natural tissue, which opens several opportunities for its use in biomedical areas. Injectable hydrogel allows temporal control and exceptional spatial arrangements and can offset hitches with established hydrogel‐based drug delivery systems. Here, we review the recent development of injectable hydrogels and their significance in the delivery of therapeutics such as cells, genes, and drug molecules and how these innovatory systems can complement the current delivery systems.  相似文献   

20.
A novel method for preparing poly (2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS) and poly (vinylpyrrolidone) (PVP) complex nanogels in PVP aqueous solution is discussed in this paper. The PAMPS/PVP complex nanogels were prepared via polymerization of 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) monomer in the presence of PVP nanoparticles which formed in water/acetone cosolvent in presence of N, N′‐methylenebisacrylamide (MBA) as a crosslinker, N, N, N′, N′‐tetramethylethylenediamine (TEMED) and potassium peroxydisulfate (KPS) as redox initiator system. The results of FTIR and 1H NMR spectra indicated that the compositions of PAMPS/PVP are consistent with the designed structure. TEM micrographs proved that PAMPS/PVP nanogels possess the spherical morphology before and after swelling. These PAMPS/PVP nanogels exhibited pH‐induced phase transition due to protonation of PAMPS chains. The properties of PAMPS/PVP nanogels indicate that PAMPS/PVP nanogels can be developed into a pH‐controlled drug delivery system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号