首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Compared to conventional preparation methods for supported heterogeneous catalysts, the use of colloidal nanoparticles (NPs) allows for a precise control over size, size distribution, and distribution/location of the NPs on the support. However, common colloidal syntheses have restrictions that limit their applicability for industrial catalyst preparation. We present a simple, surfactant‐free, and scalable preparation method for colloidal NPs to overcome these restrictions. We demonstrate how precious‐metal NPs are prepared in alkaline methanol, how the particle size can be tuned, and how supported catalysts are obtained. The potential of these colloids in the preparation of improved catalysts is demonstrated by two examples from heterogeneous catalysis and electrocatalysis.  相似文献   

2.
A chemical precursor mediated process was used to form catalyst nanoparticles (NPs) with an extremely high density (10(14) to 10(16) m(-2)), controllable size distribution (3-20 nm), and good thermal stability at high temperature (900 °C). This used metal cations deposited in layered double hydroxides (LDHs) to give metal catalyst NPs by reduction. The key was that the LDHs had their intercalated anions selected and exchanged by guest-host chemistry to prevent sintering of the metal NPs, and there was minimal sintering even at 900 °C. Metal NPs on MoO(4)(2-) intercalated Fe/Mg/Al LDH flakes were successfully used as the catalyst for the double helix growth of single-walled carbon nanotube arrays. The process provides a general method to fabricate thermally stable metal NPs catalysts with the desired size and density for catalysis and materials science.  相似文献   

3.
Advances in chemical syntheses have led to the formation of various kinds of nanoparticles (NPs) with more rational control of size, shape, composition, structure and catalysis. This review highlights recent efforts in the development of Pt and non‐Pt based NPs into advanced nanocatalysts for efficient oxygen reduction reaction (ORR) under fuel‐cell reaction conditions. It first outlines the shape controlled synthesis of Pt NPs and their shape‐dependent ORR. Then it summarizes the studies of alloy and core–shell NPs with controlled electronic (alloying) and strain (geometric) effects for tuning ORR catalysis. It further provides a brief overview of ORR catalytic enhancement with Pt‐based NPs supported on graphene and coated with an ionic liquid. The review finally introduces some non‐Pt NPs as a new generation of catalysts for ORR. The reported new syntheses with NP parameter‐tuning capability should pave the way for future development of highly efficient catalysts for applications in fuel cells, metal‐air batteries, and even in other important chemical reactions.  相似文献   

4.
This review is provided a detailed overview of the synthesis, properties and applications of nanoparticles (NPs) exist in different forms. NPs are tiny materials having size ranges from 1 to 100 nm. They can be classified into different classes based on their properties, shapes or sizes. The different groups include fullerenes, metal NPs, ceramic NPs, and polymeric NPs. NPs possess unique physical and chemical properties due to their high surface area and nanoscale size. Their optical properties are reported to be dependent on the size, which imparts different colors due to absorption in the visible region. Their reactivity, toughness and other properties are also dependent on their unique size, shape and structure. Due to these characteristics, they are suitable candidates for various commercial and domestic applications, which include catalysis, imaging, medical applications, energy-based research, and environmental applications. Heavy metal NPs of lead, mercury and tin are reported to be so rigid and stable that their degradation is not easily achievable, which can lead to many environmental toxicities.  相似文献   

5.
The interaction between metal nanoparticles (NPs) and their substrate plays a critical role in determining the particle morphology, distribution, and properties. The pronounced impact of a thin oxide coating on the dispersion of metal NPs on a carbon substrate is presented. Al2O3‐supported Pt NPs are compared to the direct synthesis of Pt NPs on bare carbon surfaces. Pt NPs with an average size of about 2 nm and a size distribution ranging between 0.5 nm and 4.0 nm are synthesized on the Al2O3 coated carbon nanofiber, a significant improvement compared to those directly synthesized on a bare carbon surface. First‐principles modeling verifies the stronger adsorption of Pt clusters on Al2O3 than on carbon, which attributes the formation of ultrafine Pt NPs. This strategy paves the way towards the rational design of NPs with enhanced dispersion and controlled particle size, which are promising in energy storage and electrocatalysis.  相似文献   

6.
庄志华  陈卫 《电化学》2021,27(2):125-143
金属纳米团簇(MNCs)是由几个到数百个金属原子组成,其尺寸一般小于2nm.金属纳米团簇在许多催化反应中表现出高的催化活性和选择性,这与金属纳米团簇具有高的比表面积、较多暴露的活性原子,以及与金属纳米粒子(MNPs)不同的电子结构有关.金属纳米团簇确定的组成和结构使其成为一种新型模型催化剂,对纳米团簇的催化性能研究有利...  相似文献   

7.
Oxide-supported metal catalysts, having always nano-sized structures in which the metal catalysts are prepared as highly dispersed nano-crystals (typically 1-20 nm) on support oxide particles that are often one to several orders of magnitude larger than the metal nano-particles, are an important class of heterogeneous metal catalysts that finds many applications in chemical/petrochemical industries, in environmental protection, in chemical sensors and in the manufacture of fine and special chemicals. It is believed that catalysis by supported metals is the oldest application of nanotechnology. The literature has been rich in nano-size effect of metal nanoparticles in the metal/oxide catalysts. However, it is until recently that the development of size-controlled synthesis of oxide nanoparticles has made it possible to study the nano-size effect of oxide-support particles. When the particle sizes of an oxide support are reduced to become comparable to the sizes of the active metal nanoparticles, the oxide could deviate dramatically from its function as a conventional support. Such metal/oxide catalysts consisting of comparably sized metal and oxide nanocrystals are better called metal/oxide nanocomposite catalysts or catalytic nanoarchitectures.In this presentation, several attempts with reducing the particle size of oxide supports (ZrO2, TiO2,MgO, Al2O3) to approach the metal/oxide nanocomposite concept will be discussed to emphasize the importance of the support size effect. Examples will be given on characteristics of nanocomposite Ni/oxide catalysts for the reforming of natural gas with CO2 and/or steam, and on Au/oxide catalysts for CO oxidation and hydrogenation of unsaturated organic compounds. It will be emphasized that systematic investigations into the size effects of both the metal and oxide nanoparticles approaching the metal/oxide nanocomposite concept can lead to advanced heterogeneous metal catalysts.Moreover, intensive practice of the nanocomposite concept would also lead to discovery of special size-dependent metal-oxide interaction and catalysis, which may provide new opportunity for performance enhancement of potential and existing catalysts.  相似文献   

8.
Supported metal catalysts,in which the metal is usually finely dispersed into nanoparticles(NPs)in size of a few nanometers on high-surface-area materials,are the workhorses in heterogeneous catalysis and have been extensively used in various key industrial processes[1].However,the surface heterogeneity arising from the uneven size distribution as well as the lower atomic efficiency derived from the presence of unexposed interior atoms of metal NPs often leads to inferior activity/selectivity.  相似文献   

9.
Carbon nanotubes (CNTs) supported Pt-Ru and Pt-Ru-Ni catalysts were prepared by chemical reduction of metal precursors with sodium borohydride at room temperature. The crystallographic properties and composition of the catalysts were characterized by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis, and the catalytic activity and stability for methanol electro-oxidation were measured by electrochemical impedance spectroscopy (EIS), linear sweep voltammetries (LSV), and chronoamperometry (CA). The results show that the catalysts exhibit face-centered cubic (fcc) structure. The particle size of Pt-Ru-Ni/CNTs catalyst is about 4.8 nm. The catalytic activity and stability of the Pt-Ru-Ni/CNTs catalyst are higher than those of Pt-Ru/CNTs catalyst.  相似文献   

10.
Noble metal nanoparticles (NPs) with 1–5 nm diameter obtained from NaHB4 reduction possess high catalytic activity. However, they are rarely used directly. This work presents a facile, versatile, and efficient aerosol‐spray approach to deliver noble‐metal NPs into metal oxide supports, while maintaining the size of the NPs and the ability to easily adjust the loading amount. In comparison with the conventional spray approach, the size of the loaded noble‐metal nanoparticles can be significantly decreased. An investigation of the 4‐nitrophenol hydrogenation reaction catalyzed by these materials suggests that the NPs/oxides catalysts have high activity and good endurance. For 1 % Au/CeO2 and Pd/Al2O3 catalysts, the rate constants reach 2.03 and 1.46 min?1, which is much higher than many other reports with the same noble‐metal loading scale. Besides, the thermal stability of catalysts can be significantly enhanced by modifying the supports. Therefore, this work contributes an efficient method as well as some guidance on how to produce highly active and stable supported noble‐metal catalysts.  相似文献   

11.
The conversion of chemical feedstock materials into high value-added products accompanied with dehydrogenation is of great value in the chemical industry.However,the catalytic dehydrogenation reaction is inhibited by a limited number of expensive noble metal catalysts and lacks understanding of dehydrogenation mechanism.Here,we report the use of heterogeneous non-noble metal iron nanoparticles(NPs) incorporated mesoporous nitrogen-doped carbon to investigate the dehydrogenation mechanism based on experiment observation and density functional theory(DFT) method.Fe NPs catalyst displays excellent performance in the dehydrogenation of 1,2,3,4-tetrahydroquinoline(THQ)with 100% selectivity and 100% conversion for 10-12 h at room temperature.The calculated adsorption energy implies that THQ prefers to adsorb on Fe NPs as compared with absence of Fe NPs.What is more,the energy barrier of transition state is relatively low,illustrating the dehydrogenation is feasible.This work provides an atomic scale mechanism guidance for the catalytic dehydrogenation reaction and points out the direction for the design of new catalysts.  相似文献   

12.
Hydrogenation reaction is one of the pillars of the chemical industry for the synthesis of drugs and fine chemicals. To achieve high catalytic performance, it is still highly desirable for constructing novel supported metal catalysts. Different from conventional supports like metal oxides, zeolites and carbon materials, metal-organic frameworks(MOFs) as the emerging porous materials have Hexhibited great potential to host metal nanoparticles (NPs) for achieving hydrogenation reactions with high catalytic efficiency, due to their unique porous structures. Recently, many progresses have been made, and thus, it is necessary to summarize the recent progresses on confining metal NPs inside MOFs for hydrogenation reactions. In this review, we first introduced the general synthesis methods for confining noble metal NPs inside MOFs. Then, the applications of noble metal NPs/MOFs catalysts in hydrogenation reactions were summarized, and the synergistic catalytic performances among noble metal NPs, metal nodes, functional groups, and pore channels in MOFs were illustrated. Subsequently, the hydrogen spillover effect involved in the hydrogenation reactions was discussed. Finally, we provide an outlook on the future research directions and challenges of confining noble metal NPs inside MOFs for hydrogenation reactions.  相似文献   

13.
Traditional anodic stripping voltammetry (ASV) involves electrodeposition (reduction) of metal ions from solution over some time scale onto a working electrode followed by stripping (oxidation) of the deposited metal in a second step, where the stripping potential and quantity of charge passed provide information about the metal identity and solution concentration, respectively. ASV has recently been extended to the analysis of metal nanoparticles (NPs), which have grown popular because of their fascinating properties tunable by size, shape, and composition. There is a need for improved methods of NP analysis, and because metal NPs can be oxidized to metal ions, ASV is a logical choice. Early studies involved metal NPs as tags for the detection of biomolecules. More recently, anodic stripping has been used to directly analyze the physical, chemical, and structural properties of metal NPs. This review highlights the stripping analysis of NP assemblies on macroelectrodes, individual NPs in solution during collisions with a microelectrode, and a single NP attached to an electrode. A surprising amount of information can be learned from this very simple, low-cost technique.  相似文献   

14.
The support materials play a critical role for the electrocatalytic oxidation of ethanol on precious metal catalysts in fuel cells. Here, we report the poly(3,4-ethylenedioxythiophene) combined with reduced graphene oxide (PEDOT-RGO) as the support of Pd nanoparticles (NPs) for ethanol electrooxidation in alkaline medium. The as-prepared Pd/PEDOT-RGO composite catalysts are characterized by Raman spectrometer, X-ray diffraction, transmission electron microcopy, and scanning electron microcopy. PEDOT-RGO composite with the porous structure facilitates the dispersion of Pd NPs with a smaller size leading to the increase of electrochemical active surface area. The electrochemical properties and electrocatalytic activities of Pd/PEDOT-RGO hybrid are evaluated by cyclic voltammetry, chronoamperometry, CO stripping voltammetry, electrochemical impedance spectroscopy (EIS) and Tafel analysis. The results suggest that Pd/PEDOT-RGO hybrid shows a higher electrocatalytic activity, a better long-term stability, and the poisoning tolerance for the ethanol electrooxidation than Pd on carbon black. EIS and Tafel analysis indicate that PEDOT-RGO improves the kinetics of ethanol electrooxidation on the Pd NPs and is an efficient support in fuel cells.  相似文献   

15.
Controllable synthesis of atomically ordered intermetallic nanoparticles (NPs) is crucial to obtain superior electrocatalytic performance for fuel cell reactions, but still remains arduous. Herein, we demonstrate a novel and general hydrogel‐freeze drying strategy for the synthesis of reduced graphene oxide (rGO) supported Pt3M (M=Mn, Cr, Fe, Co, etc.) intermetallic NPs (Pt3M/rGO‐HF) with ultrasmall particle size (about 3 nm) and dramatic monodispersity. The formation of hydrogel prevents the aggregation of graphene oxide and significantly promotes their excellent dispersion, while a freeze‐drying can retain the hydrogel derived three‐dimensionally (3D) porous structure and immobilize the metal precursors with defined atomic ratio on GO support during solvent sublimation, which is not afforded by traditional oven drying. The subsequent annealing process produces rGO supported ultrasmall ordered Pt3M intermetallic NPs (≈3 nm) due to confinement effect of 3D porous structure. Such Pt3M intermetallic NPs exhibit the smallest particle size among the reported ordered Pt‐based intermetallic catalysts. A detailed study of the synthesis of ordered intermetallic Pt3Mn/rGO catalyst is provided as an example of a generally applicable method. This study provides an economical and scalable route for the controlled synthesis of Pt‐based intermetallic catalysts, which can pave a way for the commercialization of fuel cell technologies.  相似文献   

16.
Palladium nanoparticles (NPs) of different mean particle size have been synthesized in the host structure of the porous coordination polymer (or metal-organic framework: MOF) MIL-101. The metal-organic chemical vapor deposition method was used to load MIL-101 with the Pd precursor complex [(η(5)-C(5)H(5))Pd(η(3)-C(3)H(5))]. Loadings higher than 50 wt.% could be accomplished. Reduction of the Pd precursor complex with H(2) gave rise to Pd NPs inside the MIL-101 (Pd@MIL-101). The reduction conditions, especially the temperature, allows us to make size-conform (size of the Pd NPs correlates with the size of the cavities of the host structure of MIL-101) and undersized Pd NPs. The Pd@MIL-101 samples were characterized by X-ray diffraction, IR spectroscopy, Brauner-Emmett-Teller (BET) analysis, elemental analysis, and transmission electron microscopy (TEM). Catalytic studies, hydrogenation of ketones, were performed with selected Pd@MIL-101 catalysts. Activity, selectivity, and recyclability of the catalyst family are discussed.  相似文献   

17.
Materials for high‐efficiency photocatalytic CO2 reduction are desirable for solar‐to‐carbon fuel conversion. Herein, highly dispersed nickel cobalt oxyphosphide nanoparticles (NiCoOP NPs) were confined in multichannel hollow carbon fibers (MHCFs) to construct the NiCoOP‐NPs@MHCFs catalysts for efficient CO2 photoreduction. The synthesis involves electrospinning, phosphidation, and carbonization steps and permits facile tuning of chemical composition. In the catalyst, the mixed metal oxyphosphide NPs with ultrasmall size and high dispersion offer abundant catalytically active sites for redox reactions. At the same time, the multichannel hollow carbon matrix with high conductivity and open ends will effectively promote mass/charge transfer, improve CO2 adsorption, and prevent the metal oxyphosphide NPs from aggregation. The optimized hetero‐metal oxyphosphide catalyst exhibits considerable activity for photosensitized CO2 reduction, affording a high CO evolution rate of 16.6 μmol h?1 (per 0.1 mg of catalyst).  相似文献   

18.
在表面增强拉曼光谱(SERS)的研究领域中,基于局域表面等离子体共振效应的等离子体SERS基底的制备成为过去几十年的研究热点。然而,通常开发的等离子体金属基底具有较差的稳定性和重现性。对于SERS而言,石墨烯类材料具有拉曼化学增强效应,除此之外,还具有分子富集、强的稳定性与荧光猝灭能力等优点,因此基于石墨金属复合纳米材料的SERS基底受到了研究人员的重视。我们利用化学气相沉积(CVD)法制备了小尺寸的金石墨核壳纳米颗粒(Au@G),其粒径约为17 nm。我们通过在Au NP上包覆介孔二氧化硅来控制Au@G的尺寸,同时还研究了包覆二氧化硅过程中,正硅酸乙酯(TEOS)的浓度对于石墨壳层形成的影响。结果表明当TEOS在一定浓度范围内,其浓度的降低有利于得到石墨化程度高的Au@G。进一步利用Au@G对结晶紫分子进行拉曼检测,也表明了Au@G具有较好的拉曼增强效果。这种小尺寸的Au@G在分子检测与细胞成像分析领域中具有广泛的应用潜力。  相似文献   

19.
Alloying degree, particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying degree of the object substance, which lead to a great positive impact on its properties. In this work, three types of solvents and their mixtures were used in preparation of the Pt-Ru/C catalysts by chemical reduction of metal precursors with sodium borohydride at room temperature. The structure of the catalysts was characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The catalytic activity and stability for methanol electro-oxidation were studied by Cyclic Voltammetry (CV) and Chronoamperometry (CA). Pt-Ru/C catalyst prepared in H2O or binary solvents of H2O and isopropanol had large particle size and low alloying degree leading to low catalytic activity and less stability in methanol electro-oxidation. When tetrahydrofuran was added to the above solvent systems, Pt-Ru/C catalyst prepared had smaller particle size and higher alloying degree which resulted in better catalytic activity, lower onset and peak potentials, compared with the above catalysts. Moreover, the catalyst prepared in ternary solvents of isopropanol, water and tetrahydrofuran had the smallest particle size, and the high alloying degree and the dispersion kept unchanged. Therefore, this kind of catalyst showed the highest catalytic activity and good stability for methanol electro-oxidation.  相似文献   

20.
The stabilization of surfactant‐assisted synthesized colloidal noble metal nanoparticles (NPs, such as Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, surfactant removal to obtain clean surfaces for catalysis through traditional approaches (such as solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Such unwanted surfactants have now been utilized to stabilize NPs on solids by a simple yet efficient thermal annealing strategy. After being annealed in N2 flow, the surface‐bound surfactants are carbonized in situ as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal‐support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post‐oxidative calcination to remove surface covers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号