首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The salts K[AuCl(2)(CN)(2)]·H(2)O (1), K[AuBr(2)(CN)(2)]·2H(2)O (2) and K[AuI(2)(CN)(2)]·?H(2)O (3) were synthesized and structurally characterized. Compound 1 crystallizes as a network of square planar [AuCl(2)(CN)(2)](-) anions separated by K(+) cations. However, 2 and 3 feature 2-D sheets built by the aggregation of [AuX(2)(CN)(2)](-) anions via weak, intermolecular X···X interactions. The mixed anion double salts K(3)[Au(CN)(2)](2)[AuBr(2)(CN)(2)]·H(2)O (4) and K(5)[Au(CN)(2)](4)[AuI(2)(CN)(2)]·2H(2)O (5) were also synthesized by cocrystallization of K[Au(CN)(2)] and the respective K[AuX(2)(CN)(2)] salts. Similarly to 2 and 3, the [Au(CN)(2)](-) and [AuX(2)(CN)(2)](-) anions form 2-D sheets via weak, intermolecular Au(I)···X and Au(I)···Au(I) interactions. In the case of 5, a rare unsupported Au(I)···Au(III) interaction of 3.5796(5) ? is also seen between the two anionic units. Despite the presence of Au(I) aurophilic interactions of 3.24-3.45 ?, neither 4 nor 5 exhibit any detectable emission at room temperature, suggesting that the presence of Au(I)···X or Au(I)···Au(III) interactions may affect the emissive properties.  相似文献   

2.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

3.
Three unusual polyoxovanadate-based inorganic-organic hybrid complexes, [Zn(Im)(2)(DMF)(2)](2)[H(2)V(10)O(28)]·Im·DMF (1), [Zn(3)(Htrz)(6)(H(2)O)(6)][V(10)O(28)]·10H(2)O·Htrz (2) and {[Zn(3)(trz)(3)(H(2)O)(4)(DMF)](2)[V(10)O(28)]·4H(2)O}(n) (3) (Im = imidazole, Htrz = 1,2,4-triazole, DMF = N,N'-dimethylammonium) have been synthesized at room temperature via evaporative crystallization, and characterized by single-crystal X-ray diffraction. Complex 1 shows the structure of a discrete [V(10)O(28)](6-) cluster grafted by two [Zn(Im)(2)(DMF)(2)](2+) fragments through two bridged oxygen atoms, representing a rarely observed coordination mode. Complex 2 consists of a linear trinuclear Zn(II) unit bridging six Htrz ligands and a [V(10)O(28)](6-) cluster as the counter anion, where the extensive hydrogen-bonding interactions lead to {Zn(3)-V(10)}(SMF) and a special water layer involving (H(2)O)(36) rings, and consequently forms a unique 3D metal-organic-water supramolecular network. Complex 3 can be described as a 3,4-connected fsc-type network, and is the first example of open coordination 3D framework based on [V(10)O(28)](6-) and the other two different secondary building units, involving mononuclear and binuclear Zn(II)-Htrz motifs. The optical properties of complexes 1-3 in the solid state are investigated at room temperature. The results show that complexes 1 and 3 emit intense blue luminescences attributed to the ligands, while complex 2 exhibits an infrequent fluorescent property, emitting both blue and yellow luminescences at 472 and 603 nm simultaneously. Furthermore, powder X-ray diffraction and thermogravimetric analyses of 1-3 are also investigated, which demonstrate their high purities and thermal stabilities.  相似文献   

4.
The redox-active fac-[Mo(V)(mp)(3)](-) (mp: o-mercaptophenolato) bearing asymmetric O- and S-cation binding sites can bind with several kinds of metal ions such as Na(+), Mn(II), Fe(II), Co(II), Ni(II), and Cu(I). The fac-[Mo(V)(mp)(3)](-) metalloligand coordinates to Na(+) to form the contact ion pair {Na(+)(THF)(3)[fac-Mo(V)(mp)(3)]} (1), while a separated ion pair, n-Bu(4)N[fac-Mo(V)(mp)(3)] (2), is obtained by exchanging Na(+) with n-Bu(4)N(+). In the presence of asymmetric binding-sites, the metalloligand reacts with Mn(II)Cl(2)·4H(2)O, Fe(II)Cl(2)·4H(2)O, Co(II)Cl(2)·6H(2)O, and Ni(II)Cl(2)·6H(2)O to afford UV-vis-NIR spectra, indicating binding of these guest metal cations. Especially, for the cases of the Mn(II) and Co(II) products, trinuclear complexes, {M(H(2)O)(MeOH)[fac-Mo(V)(mp)(3)](2)}·1.5CH(2)Cl(2) (3·1.5CH(2)Cl(2) (M = Mn(II)), 4·1.5CH(2)Cl(2) (M = Co(II))), are successfully isolated and structurally characterized where the M are selectively bound to the hard O-binding sites of the fac-[Mo(V)(mp)(3)](-). On the other hand, a coordination polymer, {Cu(I)(CH(3)CN)[mer-Mo(V)(mp)(3)]}(n) (5), is obtained by the reaction of fac-[Mo(V)(mp)(3)](-) with [Cu(I)(CH(3)CN)(4)]ClO(4). In sharp contrast to the cases of 1, 3·1.5CH(2)Cl(2), and 4·1.5CH(2)Cl(2), the Cu(I) in 5 are selectively bound to the soft S-binding sites, where each Cu(I) is shared by two [Mo(V)(mp)(3)](-) with bidentate or monodentate coordination modes. The second notable feature of 5 is found in the geometric change of the [Mo(V)(mp)(3)](-), where the original fac-form of 1 is isomerized to the mer-[Mo(V)(mp)(3)](-) in 5, which was structurally and spectroscopically characterized for the first time. Such isomerization demonstrates the structural flexibility of the [Mo(V)(mp)(3)](-). Spectroscopic studies strongly indicate that the association/dissociation between the guest metal ions and metalloligand can be modulated by solvent polarity. Furthermore, it was also found that such association/dissociation features are significantly influenced by coexisting anions such as ClO(4)(-) or B(C(6)F(5))(4)(-). This suggests that coordination bonds between the guest metal ions and metalloligand are not too static, but are sufficiently moderate to be responsive to external environments. Moreover, electrochemical data of 1 and 3·1.5CH(2)Cl(2) demonstrated that guest metal ion binding led to enhance electron-accepting properties of the metalloligand. Our results illustrate the use of a redox-active chalcogenolato complex with a simple mononuclear structure as a multifunctional metalloligand that is responsive to chemical and electrochemical stimuli.  相似文献   

5.
A simple and convenient protocol for the synthesis of the ligand 2,5-di(2-pyridyl)-1,3,4-thiadiazole (dptd) has been developed. Five new 2?:?1-type iron(II), cobalt(II), nickel(II) and copper(II) complexes have been prepared and structurally characterised, all of which feature the mononuclear trans-(N',N(1))(2) coordination mode. Spin crossover behaviour has been found for [Fe(II)(dptd)(2)(NCSe)(2)] (2) and [Fe(II)(dptd)(2)(NCBH(3))(2)]·H(2)O (3·H(2)O) with T(1/2) = 192 and 285 K, respectively, reflecting the increasing ligand field strength of the respective co-ligands and showing that the [Fe(II)(dptd)(2)L(2)] unit is suitable for the investigation of the co-ligand field effects on T(1/2). In addition, the 3?:?1-type low-spin complexes [Fe(II)(dptd)(3)]{B(CN)(4)}(2)·3MeOH (4·3MeOH) and [Fe(II)(dptd)(3)](OTf)(2)·1.25DCM·0.5H(2)O (5·1.25DCM·0.5H(2)O) have been studied by X-ray diffraction and have been found to exist exclusively as the mer or fac stereoisomer, respectively, in the solid state. In MeCN-d(3) solution the latter two complexes, as well as [Fe(II)(dptd)(3)](ClO(4))(2)·H(2)O (6·H(2)O), show counterion-independent stereoisomerisation, each yielding a ca. 3?:?1 mixture of mer and fac stereoisomers as identified by (1)H NMR spectroscopy.  相似文献   

6.
The microwave-mediated self-assembly of [W(V)(CN)(8)](3-) with Cu(II) in the presence of pyrazole ligand resulted in the formation of three novel assemblies: Cu(II)(2)(Hpyr)(5)(H(2)O)[W(V)(CN)(8)](NO(3))·H(2)O (1), {Cu(II)(5)(Hpyr)(18)[W(V)(CN)(8)](4)}·[Cu(II)(Hpyr)(4)(H(2)O)(2)]·9H(2)O (2), and Cu(II)(4)(Hpyr)(10)(H(2)O)[W(V)(CN)(8)](2)(HCOO)(2)·4.5H(2)O (3) (Hpyr =1H-pyrazole). Single-crystal X-ray structure of 1 consists of cyanido-bridged 1-D chains of vertex-sharing squares topology. The structure of 2 reveals 2-D hybrid inorganic layer topology with large coordination spaces occupied by {Cu(Hpyr)(2)(H(2)O)(4)}(2+) ions. Compound 3 contains two types of cyanido-bridged 1-D chains of vertex-sharing squares linked together by formate ions in two directions forming hybrid inorganic-organic 3-D framework (I(1)O(2)). The magnetic measurements for 1-3 reveal a weak ferromagnetic coupling through Cu(II)-NC-W(V) bridges.  相似文献   

7.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

8.
Conventional reactions of the new multidentate ligand 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp, 1) with copper(II) salts lead to four novel multidimensional coordination complexes [Cu(7atp)(mal)(H(2)O)(2)]·H(2)O (2), [Cu(2)(μ-7atp)(4)(H(2)O)(2)](ClO(4))(4)·3H(2)O (3), {[Cu(7atp)(2)(μ-ox)]·3H(2)O}(n) (4) and {[Cu(7atp)(2)(μ-suc)]·2H(2)O}(n) (5), where ox(2-), mal(2-) and suc(2-) mean oxalate, malonate and succinate, respectively. In these compounds, the 7atp ligand coordinates monodentately through its atom N3, except for compound 3, which displays N3-N4 coordination mode, giving rise to all to structures with diverse topologies and dimensionality. Compound 2 is a mononuclear entity, 3 consists of dinuclear species, 4 is a zig-zag chain with oxalate as a bridging ligand and 5 is a succinate-bridged mono-dimensional system. All polynuclear metal complexes show antiferromagnetic interactions of with J values ranging from -0.12 to -49.5 cm(-1). The ligand donor capabilities have been estimated by topological analyses of the electron density (QTAIM) and electron localization function (ELF), obtained by DFT calculations. The compounds are the first structurally characterized copper(II) complexes containing the 7atp ligand.  相似文献   

9.
Whereas complexes of divalent metal halides (X = Cl, Br, I) with/from pyridine commonly crystallise as trans-[M(py)(4)X(2)]·2py, M on a site of 222 symmetry in space group Ccca, true for CuCl(2) and CuBr(2) in particular, the copper(II) iodide adduct is of the form [Cu(py)(4)I]I·2py, Cu on a site of mm2 symmetry in space group Cmcm, and five-coordinate (square-pyramidal), the same cationic species also being found in 2[Cu(py)(4)I](I(3))·[(py)(2)Cu(μ-I)(2)Cu(py)(2)] (structurally defined). Bromide or N-thiocyanate may be substituted for the unbound iodide ion in the solvated salt, resulting in complexes which crystallize in space group Ccca, but with both anions and the metal atom disordered. In [Cu(py)(4)(I(3))(2)], a pair of long Cu···I contacts approach a square-planar Cu(py)(4) array. Assignments of the ν(CuN) and ν(CuX) (X = Br, I, SCN) bands in the far-IR spectra are made, the latter with the aid of analogous assignments for [Cu(py)(2)X(2)] (X = Cl, Br), which show a dependence of ν(CuX) on the Cu-X bond length that is very similar to that determined previously for copper(i) halide complexes. The structure of the adventitious complex [(trans-)(H(2)O)(py)(4)CuClCu(py)(4)](I(3))(3)·H(2)O is also recorded, with six- and five-coordinate copper atoms; rational synthesis provides [{Cu(py)(4)}(2)(μ-Cl)](I(3))(3)·H(2)O with one water molecule less. In [{Cu(py)(4)Cl}((∞|∞))](I(3))·3py, square pyramidal [Cu(py)(4)Cl](+) cations, assisted by Cl···Cu interactions, stack to give rise to infinite polymeric strings. Several of these compounds were prepared mechanochemically, illustrating the applicability of this method to syntheses involving redox reactions as well as to complex syntheses involving up to five components. The totality of results demonstrates that the [Cu(II)(py)(4)] entity can be stabilized in an unexpectedly diverse range of mononuclear and multinuclear complexes through the presence of lattice pyridine molecules, the bulky triiodide ion, or a combination of both.  相似文献   

10.
Two chiral, porous uranium methylenediphosphonates, [C(2)H(10)N(2)]{UO(2)[CH(2)(PO(3))(2)]}·H(2)O (UC1P2N-1) and [N(C(2)H(5))(4)]K{(UO(2))(3)[CH(2)(PO(3))(2)](2)(H(2)O)(2)}·1.5H(2)O (KUC1P2-1), have been synthesized without chiral starting materials. Both compounds display channels ~1 × 1 nm that are large enough for these materials to conduct ion-exchange with coordination complexes such as [Co(en)(3)](3+).  相似文献   

11.
Three new metal-coordinating ligands, L(1)·4HCl [1-(2-guanidinoethyl)-1,4,7-triazacyclononane tetrahydrochloride], L(2)·4HCl [1-(3-guanidinopropyl)-1,4,7-triazacyclononane tetrahydrochloride], and L(3)·4HCl [1-(4-guanidinobutyl)-1,4,7-triazacyclononane tetrahydrochloride], have been prepared via the selective N-functionalization of 1,4,7-triazacyclononane (tacn) with ethylguanidine, propylguanidine, and butylguanidine pendants, respectively. Reaction of L(1)·4HCl with Cu(ClO(4))(2)·6H(2)O in basic aqueous solution led to the crystallization of a monohydroxo-bridged binuclear copper(II) complex, [Cu(2)L(1)(2)(μ-OH)](ClO(4))(3)·H(2)O (C1), while for L(2) and L(3), mononuclear complexes of composition [Cu(L(2)H)Cl(2)]Cl·(MeOH)(0.5)·(H(2)O)(0.5) (C2) and [Cu(L(3)H)Cl(2)]Cl·(DMF)(0.5)·(H(2)O)(0.5) (C3) were crystallized from methanol and DMF solutions, respectively. X-ray crystallography revealed that in addition to a tacn ring from L(1) ligand, each copper(II) center in C1 is coordinated to a neutral guanidine pendant. In contrast, the guanidinium pendants in C2 and C3 are protonated and extend away from the Cu(II)-tacn units. Complex C1 features a single μ-hydroxo bridge between the two copper(II) centers, which mediates strong antiferromagnetic coupling between the metal centers. Complexes C2 and C3 cleave two model phosphodiesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenylphosphate (HPNPP), more rapidly than C1, which displays similar reactivity to [Cu(tacn)(OH(2))(2)](2+). All three complexes cleave supercoiled plasmid DNA (pBR 322) at significantly faster rates than the corresponding bis(alkylguanidine) complexes and [Cu(tacn)(OH(2))(2)](2+). The high DNA cleavage rate for C1 {k(obs) = 1.30 (±0.01) × 10(-4) s(-1) vs 1.23 (±0.37) × 10(-5) s(-1) for [Cu(tacn)(OH(2))(2)](2+) and 1.58 (±0.05) × 10(-5) s(-1) for the corresponding bis(ethylguanidine) analogue} indicates that the coordinated guanidine group in C1 may be displaced to allow for substrate binding/activation. Comparison of the phosphate ester cleavage properties of complexes C1-C3 with those of related complexes suggests some degree of cooperativity between the Cu(II) centers and the guanidinium groups.  相似文献   

12.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

13.
Three organic-inorganic hybrid copper-lanthanide heterometallic germanotungstates, {[Cu(en)(2)(H(2)O)] [Cu(3)Eu(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (1), {[Cu(en)(2)(H(2)O)][Cu(3)Tb(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (2) and {[Cu(en)(2)(H(2)O)][Cu(3)Dy(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·10H(2)O (3) and three polyoxometalate hybrids built by lanthanide-containing germanotungstates and copper-ethylendiamine complexes, Na(2)H(6)[Cu(en)(2)(H(2)O)](8){Cu(en)(2)[La(α-GeW(11)O(39))(2)](2)}·18H(2)O (4), K(4)H(2)[Cu(en)(2)(H(2)O)(2)](5)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Pr(α-GeW(11)O(39))(2)](2)}·16H(2)O (5) and KNa(2)H(7)[enH(2)](3)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Er(α-GeW(11)O(39))(2)](2)}·15H(2)O (6) (en = ethylenediamine) have been hydrothermally synthesized and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. 1-3 are essentially isomorphous and their main skeletons display the interesting dimeric motif {[Cu(3)Ln(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)(4-), which is constructed from two {Cu(3)LnO(4)} cubane anchored monovacant [α-GeW(11)O(39)](8-) fragments through two W-O-Ln-O-W linkers. The primary backbones of 4-6 exhibit the tetrameric architecture {Cu(en)(2)[Ln(α-GeW(11)O(39))(2)](2)}(24-) built by two 1?:?2-type [Ln(α-GeW(11)O(39))(2)](13-) moieties and one [Cu(en)(2)](2+) bridge, albeit they are not isostructural. To our knowledge, 1-6 are rare polyoxometalate derivatives consisting of copper-lanthanide heterometallic/lanthanide germanotungstate fragments. 1 exhibits antiferromagnetic coupling interactions within the {Cu(3)EuO(4)} cubane units, while 2 and 3 display dominant ferromagnetic interactions between the Tb(III)/Dy(III) and Cu(II) cations. The room-temperature solid-state photoluminescence properties of 1-3 have been investigated.  相似文献   

14.
Supertetrahedral compounds of chalcogenometalates (T3 cluster compounds) integrated with Ni-bpy (bpy = 2,2'-bipyridine) complex were prepared by a solvothermal technique. The compound [Ni(bpy)(3)](3)[H(4)In(10)S(20)]·bpy·2EG·6H(2)O (Mb-InS-1) (EG = ethylene glycol) consists of discrete T3 clusters of [H(4)In(10)S(20)](6-) with three [Ni(bpy)(3)](2+) cations. The compound [Ni(bpy)(3)](2)[H(2)In(10)S(19)]·bpy·2HEA·2H(2)O (Mb-InS-2) (EA = ethanolamine) is a 1-D polymer, in which zigzag T3 cluster chains are charge balanced by metal-bpy complex cations. The compound [Ni(bpy)(3)](7)[H(4)In(40)S(74)]·7Hbpy·3HEA·8H(2)O (Mb-InS-3) is a 2-D T3 polymer with cation layers of [Ni(bpy)(3)](2+). Integrating M-bpy complex cations into chalcogenido structures has been made with the aim of improving the photoabsorption of the materials. The electronic spectra showed the new bands of cation-anion charge-transfer (CACT) that is mainly caused by the S···H-C(py) contacts between the InS T3 supertetrahedral clusters and the [Ni(bpy)(3)](2+) cations.  相似文献   

15.
The reaction of terbium and europium salts with the lacunary polyxometalate (POM) [As(2)W(19)O(67)(H(2)O)](14-) and 2-picolinic acid (picH) affords the ternary lanthanoid-organic-polyoxometalate (Ln-org-POM) complexes [Tb(2)(pic)(H(2)O)(2)(B-β-AsW(8)O(30))(2)(WO(2)(pic))(3)](10-) (1), [Tb(8)(pic)(6)(H(2)O)(22)(B-β-AsW(8)O(30))(4)(WO(2)(pic))(6)](12-) (2), and [Eu(8)(pic)(6)(H(2)O)(22)(B-β-AsW(8)O(30))(4)(WO(2)(pic))(6)](12-) (3). A detailed synthetic investigation has established the conditions required to isolate pure bulk samples of the three complexes as the mixed salts H(0.5)K(8.5)Na[1]·30H(2)O, K(4)Li(4)H(4)[2]·58H(2)O, and Eu(1.66)K(7)[3]·54H(2)O, each of which has been characterized by single crystal X-ray diffraction. Complexes 2 and 3 are isostructural and can be considered to be composed of two molecules of 1 linked through an inversion center with four additional picolinate-chelated lanthanoid centers. When irradiated with a laboratory UV lamp at room temperature, compounds K(4)Li(4)H(4)[2]·58H(2)O and Eu(1.66)K(7)[3]·54H(2)O visibly luminesce green and red, respectively, while compound H(0.5)K(8.5)Na[1]·30H(2)O is not luminescent. A variable temperature photophysical investigation of the three compounds has revealed that both the organic picolinate ligands and the inorganic POM ligands sensitize the lanthanoid(III) luminescence, following excitation with UV light. However, considerably different temperature dependencies are observed for Tb(III) versus Eu(III) through the two distinct sensitization pathways.  相似文献   

16.
Ni ZH  Kou HZ  Zhang LF  Ni WW  Jiang YB  Cui AL  Ribas J  Sato O 《Inorganic chemistry》2005,44(26):9631-9633
A new cyanide-containing building block K[Fe(pcq)(CN)(3)] [1; pcq(-) = 8-(pyridine-2-carboxamido)quinoline anion] containing a low-spin Fe(III) center with three cyanide groups in a meridional arrangement has been successfully designed and synthesized. Three cyanide-bridged trinuclear Fe(III)(2)Mn(II) complexes, [Fe(pcq)(CN)(3)](2)[Mn(CH(3)OH)(2)(H(2)O)(2)].2H(2)O (2), [Fe(pcq)(CN)(3)](2)[Mn(bipy)(2)].CH(3)OH.2H(2)O (3), and [Fe(pcq)(CN)(3)](2)[Mn(phen)(2)].CH(3)OH.2H(2)O (4), have been synthesized and structurally characterized. The magnetic susceptibilities of the three heterometallic complexes have been investigated.  相似文献   

17.
TMEDA-free (TMEDA: tetramethylethylenediamine) LiCH(2)SMe is a suitable reagent for the selective introduction of (methylthio)methyl groups into PhBBr(2) and its p-silylated derivative Me(3)Si--C(6)H(4)--BBr(2). The resulting compounds, R*--C(6)H(4)--B(Br)(CH(2)SMe) (R*=H: 2; R*=SiMe(3): 7) and PhB(CH(2)SMe)(2) (3), form cyclic dimers through B--S adduct bonds in solution and in the solid state. Compounds 2 and 3 have successfully been used for preparing the (N(2)S) scorpionate [PhBpz(2)(CH(2)SMe)](-) ([5](-)) (pz: pyrazol-1-yl) and the (NS(2)) scorpionate [PhBpz(CH(2)SMe)(2)](-), respectively. Compound 7 proved to be an excellent building block for the heteroditopic poly(pyrazol-1-yl)borate p-[pz(3)B--C(6)H(4)--Bpz(2)(CH(2)SMe)](2-) ([10](2-)) that mimics the two ligation sites of the copper enzymes peptidylglycine alpha-hydroxylating monooxygenase and dopamine beta-monooxygenase. Treatment of the monotopic tripod [5](-) with CuCl and CuBr(2) results in the formation of complexes K[Cu(5)(2)] and [Cu(5)(2)]. An X-ray crystallography study of K[Cu(5)(2)] revealed a tetrahedral (N(2)S(2)) coordination environment for the Cu(I) ion, whereas the Cu(II) ion of [Cu(5)(2)] possesses a square-pyramidal (N(4)S) ligand sphere (S-atom in the axial position). The remarkable redox properties of K[Cu(5)(2)] and [Cu(5)(2)] have been assessed by cyclic voltammetry and quantum chemical calculations. The reaction of K[Cu(5)(2)] with dry air leads to the Cu(II) species [Cu(5)(2)] and to a tetranuclear Cu(II) complex featuring [PhB(O)pz(2)](2-) ligands. Addition of CuCl to K(2)[10] gives the complex K(3)[Cu(10)(2)] containing two ligand molecules per Cu(I) center. The Cu(I) ion binds to both heteroscorpionate moieties and thereby establishes a coordination environment similar to that of the Cu(I) ion in K[Cu(5)(2)].  相似文献   

18.
Kou HZ  Zhou BC  Gao S  Liao DZ  Wang RJ 《Inorganic chemistry》2003,42(18):5604-5611
A series of cyano-bridged Ni(II)-Cr(I/III) complexes have been synthesized by the reactions of hexaazacyclic Ni(II) complexes with [Cr(CN)(6)](3-) or [Cr(CN)(5)(NO)](3-). Using the tetravalent Ni(II) complex [Ni(H(2)L(2))](4+) (L(2) = 3,10-bis(2-aminoethyl)-1,3,6,8,10,12-hexaazacyclotetradecane), one-dimensional chainlike complexes were produced and subject to magnetic studies, affording the intermetallic magnetic exchange constants of J(1) = +0.23 cm(-1) and J(2) = +8.4 cm(-1) for the complex [Ni(H(2)L(2))][Cr(CN)(5)(NO)]ClO(4).5H(2)O (1) and of J = +5.9 cm(-1) for the complex [Ni(H(2)L(2))](4)[Cr(CN)(6)](5)OH.15H(2)O (2). X-ray diffraction analysis shows that complex 1 has a zigzag chain structure, whereas complex 2 consists of a branched chain structure. Complex 2 exhibits antiferromagnetic ordering at 8.0 K (T(N)). When an octahedral Ni(II) complex cis-[NiL(3)(en)](2+) (en = 1,2-ethylenediamine, L(3) = 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) was used for the synthesis, the common 2D honeycomb-layered complex [NiL(3)](3)[Cr(CN)(5)(NO)](2).8H(2)O (3) was obtained, which has a T(N) value of 3.3 K. Below T(N), a metamagnetic behavior was observed in complexes 2 and 3.  相似文献   

19.
The synthesis and characterization of a series of cyclo-alkylammonium pentaborate salts {[cyclo-C(n)H(2n-1)NR(3)][B(5)O(6)(OH)(4)] (R = H, n = 3, 5-7 (1-4); R = Me, n = 6 (5))} are reported. Compounds 1, 2 and 5 have been further characterized by single-crystal XRD studies. Attempted recrystallization of 3 and 4 yielded small crops of the unexpected heptaborate salts, [cyclo-C(6)H(11)NH(3)](2)[B(7)O(9)(OH)(5)]·3H(2)O·B(OH)(3) (6) and [cyclo-C(7)H(13)NH(3)](2)[B(7)O(9)(OH)(5)]·2H(2)O·2B(OH)(3) (7) which were also characterized crystallographically. All compounds show extensive supramolecular H-bonded anionic lattices templated by the cations. H-bond interactions are described in detail. TGA-DSC analysis of the pentaborates 1-5 showed that they thermally decomposed in air at 800 °C to 2.5B(2)O(3), in a 2 step process involving dehydration (<250 °C) and oxidative decomposition (250-600 °C). BET analysis of materials derived from the pentaborates had internal porosities of <1 m(2) g(-1).  相似文献   

20.
We investigate the reactivity of MoO(4)(2-) toward six organoammonium cations (+)(Me(3-x)H(x)N)(CH(2))(2)(NH(y)Me(3-y))(+) (x, y = 1-3) at different synthesis temperatures ranging from 70 to 180 °C. A total of 16 hybrid organic-inorganic materials have been synthesized at an initial pH of 2, via ambient pressure and hydrothermal routes, namely, (H(2)en)[Mo(3)O(10)]·H(2)O (1), (H(2)en)[Mo(3)O(10)] (2), (H(2)en)[Mo(5)O(16)] (3), (H(2)MED)(2)[Mo(8)O(26)]·2H(2)O (4), (H(2)MED)[Mo(5)O(16)] (5), (N,N-H(2)DMED)(2)[Mo(8)O(26)]·2H(2)O (6), (N,N-H(2)DMED)(2)[Mo(8)O(26)]·2H(2)O (7), (N,N'-H(2)DMED)(2)[Mo(8)O(26)] (8), (N,N'-H(2)DMED)[Mo(5)O(16)] (9), (H(2)TriMED)(2)[Mo(8)O(26)]·4H(2)O (10), (H(2)TriMED)(2)[Mo(8)O(26)]·2H(2)O (11), (H(2)TriMED)[Mo(7)O(22)] (12), (H(2)TMED)(2)[Mo(8)O(26)]·2H(2)O (13), (H(2)TMED)(2)[Mo(8)O(26)] (14), (H(2)TMED)(2)[Mo(8)O(26)] (15), and (H(2)TMED)[Mo(7)O(22)] (16). All of these compounds contain different polyoxomolybdate (Mo-POM) blocks, i.e., discrete β-[Mo(8)O(26)](4-) blocks in 6, 10, 13, 14, (1)/(∞)[Mo(3)O(10)](2-), and (1)/(∞)[Mo(8)O(26)](4-) polymeric chains in 1, 2, 4, 7, 8, and 15, respectively, and (2)/(∞)[Mo(5)O(16)](2-) and (2)/(∞)[Mo(7)O(22)](2-) layers in 3, 5, 9, 12, and 16, respectively. The structures of 5, 9, and 14 have been resolved by single-crystal X-ray analyses. The characterization of the different Mo-POM blocks in 1-16 by Fourier transform Raman spectroscopy is reported. The impact of the synthesis temperature on both the composition and topology of the Mo-POM blocks is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号