首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Time- and frequency-domain three-wave mixing spectroscopy (IR+visible sum frequency generation) is developed as the lowest-order nonlinear technique that is both surface selective and capable of measuring spectral evolution of vibrational coherences. Using 70 fs infrared and 40 fs visible pulses, we observe ultrafast spectral dynamics of the OD stretch of D2O at the CaF2 surface. Spectral shifts indicative of the hydrogen-bond network rearrangement occur on the 100 fs time scale, within the observation time window determined by the vibrational dephasing. By tuning the IR pulse wavelength to the blue or red side of the OD-stretch transition, we selectively monitor the dynamics of different subensembles in the distribution of the H-bond structures. The blue-side excitation (weaker H-bonding structures) shows monotonic decay and nu(OD) frequency shift to the red on a 100 fs time scale, which is better described by a Gaussian than an exponential frequency correlation function. In contrast, the red-side excitation (stronger H-bonding structures) results in a blue spectral shift and a recursion in the signal at 125+/-10 fs, indicating the presence of an underdamped intermolecular mode of interfacial water.  相似文献   

2.
Time and frequency domain sum-frequency generation (SFG) were combined to study the dynamics and structure of self-assembled monolayers (SAMs) on a fused silica surface. SFG-free induction decay (SFG-FID) of octadecylsilane SAM in the CH stretching region shows a relatively long time scale oscillation that reveals that six vibrational modes are involved in the response of the system. Five of the modes have commonly been used for the fitting of SFG spectra in the CH stretching region, namely the symmetric stretch and Fermi resonance of the methyl group, the antisymmetric stretch of the methyl, as well as the symmetric and antisymmetric stretches of the methylene group. The assignment of the sixth mode to the terminal CH(2) group was confirmed by performing a density function theory calculation. The SFG-FID measures the vibrational dephasing time (T(2)) of each of the modes, including a specific CH(2) group within the SAM, the terminal CH(2), which had never been measured before. The relatively long (~1.3 ps) dephasing of the terminal CH(2) suggests that alkyl monolayer structure is close to that of the liquid condensed phase of Langmuir Blodgett films.  相似文献   

3.
The vibrational nonlinear activity of films of 2,4‐dinitrophenyl phospholipid (DNP) at the solid interface is measured by sum‐frequency generation spectroscopy (SFG). Hybrid bilayers are formed by a Langmuir–Schaefer approach in which the lipid layer is physisorbed on top of a self‐assembled monolayer of dodecanethiol on Pt with the polar heads pointing out from the surface. The SFG response is investigated in two vibrational frequency domains, namely, 3050–2750 and 1375–1240 cm?1. The first region probes the CH stretching modes of DNP films, and the latter explores the vibrational nonlinear activity of the 2,4‐dinitroaniline moiety of the polar head of the lipid. Analysis of the CH stretching vibrations suggests substantial conformational order of the aliphatic chains with only a few gauche defects. To reliably assign the detected SFG signals to specific molecular vibrations, DFT calculations of the IR and Raman activities of molecular models are performed and compared to experimental solid‐state spectra. This allows unambiguous assignment of the observed SFG vibrations to molecular modes localized on the 2,4‐dinitroaniline moiety of the polar head of DNP. Then, SFG spectra of DNP in the 1375–1240 cm?1 frequency range are simulated and compared with experimental ones, and thus the 1,4‐axis of the 2,4‐dinitrophenyl head is estimated to have tilt and rotation angles of 45±5° and 0±30°, respectively.  相似文献   

4.
An n-alkanethiol, octadecanethiol (ODT), monolayer was successfully prepared onto an oxide-free mild steel (MS) surface under cathodic polarization in a 0.1 M LiCl/CH(3)OH solution containing 1 mM ODT. Cyclic voltammetry (CV) and electrochemical impedance (EIS) and sum frequency generation (SFG) spectroscopy were applied to study and characterize the adsorption of ODT at a MS surface. In 0.1 M LiCl/CH(3)OH solution containing 1 mM ODT, CV of the MS electrode shows a dramatic decrease in charging current and a positive shift in oxidation potential when compared to a solution without ODT. The interfacial capacitance was obtained as 2.52 microF/cm(2) from the impedance data. An average chain tilt angle of 48 degrees for the ODT molecules was deduced from the comparison of the interfacial capacitances of the ODT/MS and ODT/Au monolayers. X-ray photoelectron spectroscopy confirmed the formation of the ODT monolayer on mild steel. The ppp SFG spectrum of the ODT-modified MS features three strong methyl vibrational modes at 2877, 2943, and 2967 cm(-1), indicating the formation of the oriented and densely packed ODT monolayer. However, the appearance of the two weak CH(2) groups' vibrational modes at 2850 and 2914 cm(-1) implies the presence of defects in the ODT monolayer. ODT/Au films were prepared to compare with the ODT/MS films. Orientation analysis of the air/solid interface suggests that the methyl group of ODT/Au films has a tilt angle of 30 degrees , while the methyl group of ODT/MS films has a tilt angle of 23 degrees . Water was found to have an impact on the shape of the SFG spectra of ODT/MS. This suggests that the solution penetrated through the defects to reach the MS surface.  相似文献   

5.
Infrared spectra of jet-cooled CH(3)OD and CH(3)OH in the CH stretch region are observed by coherence-converted population transfer Fourier transform microwave-infrared (CCPT-FTMW-IR) spectroscopy (E torsional species only) and by slit-jet single resonance spectroscopy (both A and E torsional species, CH(3)OH only). Twagirayezu et al. reported the analysis of ν(3) symmetric CH stretch region (2750-2900 cm(-1); Twagirayezu et al. J. Phys. Chem. A 2010, 114, 6818), and the present work addresses the more complicated higher frequency region (2900-3020 cm(-1)) containing the two asymmetric CH stretches (ν(2) and ν(9)). The additional complications include a higher density of coupled states, more extensive mixing, and evidence for Coriolis as well as anharmonic coupling. The overall observed spectra contain 17 interacting vibrational bands for CH(3)OD and 28 for CH(3)OH. The sign and magnitude of the torsional tunneling splittings are deduced for three CH stretch fundamentals (ν(3), ν(2), ν(9)) of both molecules and are compared to a model calculation and to ab initio theory. The number and distribution of observed vibrational bands indicate that the CH stretch bright states couple first to doorway states that are binary combinations of bending modes. In the parts of the spectrum where doorway states are present, the observed density of coupled states is comparable to the total density of vibrational states in the molecule, but where there are no doorway states, only the CH stretch fundamentals are observed. Above 2900 cm(-1), the available doorway states are CH bending states, but below, the doorway states also involve OH bending. A time-dependent interpretation of the present FTMW-IR spectra indicates a fast (~200 fs) initial decay of the bright state followed by a second, slower redistribution (about 1-3 ps). The qualitative agreement of the present data with the time-dependent experiments of Iwaki and Dlott provides further support for the similarity of the fastest vibrational relaxation processes in the liquid and gas phases.  相似文献   

6.
Molecular organization at polyimide surfaces used as alignment layers in liquid crystal displays was investigated using vibrational sum frequency generation (SFG) spectroscopy. We focus on the orientation of the long alkyl side groups at the polymer surface using polarization-selected SFG spectra of the CH(3)- and CH(2)-stretch modes of the side chain. Mechanical rubbing and baking, an accepted industrial procedure used to produce pretilt of the liquid crystal, was found to induce pronounced azimuthal anisotropy in the orientational distribution of the alkyl side chains. Orientational analysis of the SFG vibrational spectra in terms of the azimuthal and tilt angles (in and out of plane, respectively) of the alkyl side chains shows their preferential tilt along the rubbing direction, with the azimuthal distribution narrower for stronger rubbed polymer samples.  相似文献   

7.
The segregation behavior of binary polymer blends at hydrophilic solid sapphire and air interfaces was investigated by infrared-visible sum frequency generation (SFG) vibrational spectroscopy. SFG spectra were collected from a bulk miscible blend consisting of identical molecular weight (approximately 54,000) and similar surface free energy (29-35 dyn/cm) components of atactic polypropylene (aPP) and aspecific poly(ethylene-co-propylene) rubber (aEPR). Characteristic CH resonances of the blend were contrasted with those of the individual components at both buried (sapphire/polymer) and free (air/polymer) interfaces. Preferential segregation of the aPP component was observed after annealing at both air/polymer and sapphire/polymer interfaces. SFG spectra revealed ordering of the polymer backbone segments with the methylene (CH2) groups perpendicular to the surface at the sapphire interface and the methyl (CH3) groups upright at the air interface. The SFG results indicate that the surface composition can be determined from the peak intensities that are characteristic of each component and that conformational entropy played a likely role in surface segregation. aPP occupied a smaller free volume at the surface because of a statistically smaller segment length (aPP is more flexible and has a shorter length). In addition, the high density of the ordered CH3 side branches enhanced the surface activity by allowing the long-chain backbone segments of aPP to order at the surface.  相似文献   

8.
Here we report the theory formulation and the experiment realization of sum-frequency generation vibrational spectroscopy (SFG-VS) in the cross-propagation (XP) geometry or configuration. In the XP-SFG-VS, the visible and the infrared (IR) beams in the SFG experiment are delivered to the same location on the surface from visible and IR incident planes perpendicular to each other, avoiding the requirement to have windows or optics to be transparent to both the visible and IR frequencies. Therefore, the XP geometry is applicable to study surfaces in the enclosed vacuum or high pressure chambers with far infrared (FIR) frequencies that can directly access the metal oxide and other lower frequency surface modes, with much broader selection of visible and IR transparent window materials. The potential applications include surface science, material science, fundamental catalytic sciences, as well as low temperature molecular sciences, etc.  相似文献   

9.
Adsorption of methyl chloride and coadsorption of CH3Cl and D2O on Pd(111) surfaces at T=100 K have been studied under ultrahigh-vacuum conditions using femtosecond sum frequency generation (SFG) spectroscopy in the spectral regions of CH and OD bands. On the bare Pd(111) substrate, the CH3Cl coverage dependence of the resonant SFG signal is consistent with a progressive molecular rearrangement starting at half saturation followed by the growth of two ordered monolayers in which the molecular axes are perpendicular to the surface. When CH3Cl is adsorbed on top of predeposited D2O on Pd(111), the SFG signals as a function of the CH3Cl exposure indicate that methyl chloride is adsorbed onto D2O through hydrogen bonding. On the contrary when the adsorption order is reversed the strong decrease of the CH3 signal as a function of the D2O exposure is explained by assuming that water molecules penetrate inside the CH3Cl layers, leading to the formation of disordered CH3Cl clusters. In all cases a nonresonant contribution due to molecular adsorption is observed and it shows a dependence upon surface structure and coverage significantly different from that of the resonant vibrational bands.  相似文献   

10.
Vibrational sum frequency generation (VSFG) spectroscopy was used to study the nanoscale geometric effects on molecular conformation of dodecanethiol ligand on gold nanoparticles of varying size between 1.8 and 23 nm. By analyzing the CH3 and CH2 stretch transitions of dodecanethiol using the spectroscopic propensity rules for the SFG process, we observe the increase of the gauche defects in the alkyl chain of the ligand on the nanoparticle surface when the curvature approaches the size of the molecule ( approximately 1.6 nm). In contrast, linear infrared absorption and Raman spectra, governed by different selection rules, do not allow observation of the size-dependent conformational changes. The results are understood in terms of the geometric packing effect, where the curvature of the nanoparticle surface results in the increased conical volume available for the alkyl chain.  相似文献   

11.
The C-H stretch vibrational spectra of the trisiloxane superspreading surfactant Silwet L-77((CH3)3Si-O-Si(CH3)(C3H6)(OCH2CH2)7-8OCH3)-O-Si(CH3)3) at the air/water interface are measured with the surface Sum Frequency Generation Vibrational Spectroscopy (SFG-VS). The spectra are dominated with the features from the –Si-CH3 groups around 2905 cm-1 (symmetric stretch or SS mode) and 2957 cm-1 (mostly the asymmetric stretch or AS mode), and with the weak but apparent contribution from the -O-CH2- groups around 2880 cm-1 (symmetric stretch or SS mode). Comparison of the polarization dependent SFG spectra below and above the critical aggregate or micelle concentration (CAC) indicates that the molecular orientation of the C¡H related molecular groups remained unchanged at different surface densities of the Silwet L-77 surfactant. The SFG-VS adsorption isotherm suggested that there was no sign of Silwet L-77 bilayer structure formation at the air/water interface. The Gibbs adsorption free energy of the Silwet surfactant to the air/water interface is -42.2±0.8kJ/mol, indicating the unusually strong adsorption ability of the Silwet L-77 superspreading surfactant  相似文献   

12.
In this paper, the feasibility of monitoring molecular structures at a moving polymer/liquid interface by sum frequency generation (SFG) vibrational spectroscopy has been demonstrated. N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane (AATM, NH2(CH2)2NH(CH2)3Si(OCH3)3) has been brought into contact with a deuterated poly(methyl methacrylate) (d-PMMA) film, and the interfacial silane structure has been monitored using SFG. Upon initial contact, the SFG spectra can be detected, but as time progresses, the spectral intensity changes and finally disappears. Additional experiments indicate that these silane molecules can diffuse into the polymer film and the detected SFG signals are actually from the moving polymer/silane interface. Our results show that the molecular order of the polymer/silane interface exists during the entire diffusion process and is lost when the silane molecules traverse through the thickness of the d-PMMA film. The loss of the SFG signal is due to the formation of a new disordered substrate/silane interface, which contributes no detectable SFG signal. The kinetics of the diffusion of the silane into the polymer have been deduced from the time-dependent SFG signals detected from the AATM molecules as they diffuse through polymer films of different thickness.  相似文献   

13.
Semifluorinated self-assembled (FAS SA) films fabricated from trifunctional precursors are frequently used in myriad applications, yet an understanding of the effects of fabrication conditions, including deposition time, on adsorption mechanisms and molecular architectures is still being developed. In this work we prepared SA films based on the F(CF(2))(8)(CH(2))(2)SiCl(3) (FAS-17) precursor and characterized these films using a suite of surface analytical techniques. Contact angle, sum frequency generation (SFG) spectroscopy, X-ray photoelectron spectroscopy (XPS), and ellipsometry results are consistent with the formation of disordered sub-monolayer structures at short deposition times, well-ordered monolayers at intermediate deposition times, and inhomogeneous multilayers at long deposition times. Correlation of SFG and XPS results demonstrates a change in FAS-17 chain orientation as the deposition time increases from 2 s to 5 min. Group theory-based calculations, SFG studies, and Fourier-transform infrared (FTIR) results also afford additional evidence in support of the assignment of the SFG signals at ~1345 and ~1370 cm(-1) to the asymmetric stretching mode of the semifluorinated silane chain's terminal CF(3) group rather than to its axial CF(2) stretches. To our knowledge, this is the first report of SFG studies on semifluoroalkyl silane self-assembled films in the C-F stretching frequency region.  相似文献   

14.
The combination of Monte Carlo, ab initio, and DFT computational studies of ethylene glycol (EG) and EG-water hydrogen-bonding complexes indicate that experimental vibrational spectra of EG and EG-water solution surfaces have contributions from numerous conformations of both EG and EG-water. The computed spectra, derived from harmonic vibrational frequency calculations and a theoretical Boltzmann distribution, show similarity to the experimental surface vibrational spectra of EG taken by broad-bandwidth sum frequency generation (SFG) spectroscopy. This similarity suggests that, at the EG and aqueous EG surfaces, there are numerous coexisting conformations of stable EG and EG-water complexes. A blue shift of the CH2 symmetric stretch peak in the SFG spectra was observed with an increase in the water concentration. This change indicates that EG behaves as a hydrogen-bond acceptor when solvated by additional water molecules. This also suggests that, in aqueous solutions of EG, EG-EG aggregates are unlikely to exist. The experimental blue shift is consistent with the results from the computational studies.  相似文献   

15.
采用红外-可见和频振动光谱研究了表面包覆油酸分子的Fe3O4纳米颗粒, 得到了2种实验构型(构型1: 可见光入射角63°, 红外光入射角55°; 构型2: 可见光入射角45°, 红外光入射角55°)和3种偏振组合(ssp, ppp, sps)下的和频振动光谱, 比较了2种实验构型下和频光谱的特征, 通过偏振分析方法对各个光谱峰进行了归属.  相似文献   

16.
In numerous applications in microfluidics, cell growth, soft lithography, and molecular imprinting, the surface of poly(dimethylsiloxane) (PDMS) is modified from a hydrophobic methyl-terminated surface to a hydrophilic hydroxyl-terminated surface. In this study, we investigated molecular structural and orientational changes at the PDMS-air interface in response to three commonly used surface modification processes: exposure to long-wavelength ultraviolet light (UV), exposure to short-wavelength UV that generates ozone (UVO), and exposure to oxygen plasma (OP). The surfaces of two PDMS compositions (10:1 and 4:1 of base polymer/curing agent) were probed during modification, using monolayer-sensitive IR + visible sum frequency generation (SFG) vibrational spectroscopy, with two different polarization combinations. During PDMS surface modification, the peak intensities of CH3 side groups and CH2 cross-link groups decreased, while peak intensities of Si-OH groups increased. There was no significant change in the average orientation of the CH3 groups on the PDMS surface during modification. The concentration of CH3 groups on the surface decreased exponentially with time, for all three UV, UVO, and OP modification processes, with first order kinetics and time constants of approximately 160, 66, and 0.3 min, respectively. At steady state, residual CH3 groups were detected at the PDMS surface for UV and UVO treatments; however, there were negligible CH3 groups detected after OP modification.  相似文献   

17.
Sum frequency generation vibrational spectroscopy (SFG-VS) is a robust technique for interfacial investigation at molecular level. The performance of SFG-VS mostly depends on the spectral resolution of the SFG system. In this research, a simplified function was deduced to calculate the spectral resolution of picosecond SFG system and the lineshape of SFG spectra based on the Guassian shaped functions of IR beam and visible beam. The function indicates that the lineshpe of SFG spectra from nonresonant samples can be calculated by the Guassian widths of both IR beam and visible beam. And the Voigt lineshape of SFG spectra from vibrational resonant samples can be calculated by the Homogeneous broadening (Lorentzian width) and Inhomogeneous broadening (Guassian width) of vibrational modes, as well as the Guassian widths of both IR beam and visible beam. Such functions were also applied to verify the spectral resolution of the polarization-resolved and frequency-resolved picosecond SFG-VS system which was developed by our group recently. It is shown that the linewidths of IR beams that generated from current laser system are about 1.5 cm-1. The calculated spectral resolution of current picosecond IR scanning SFG-VS system is about 4.6 cm-1, which is consist with he spctral resolution shown in the spectra of cholesterol monolayer (3.5-5 cm-1).  相似文献   

18.
In this communication, we demonstrate the first use of sum-frequency generation (SFG) vibrational spectroscopy to measure directly the phase transition temperature (Tm) of a single planar supported lipid bilayer (PSLB). Three saturated phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (DHPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), were studied. Lipid bilayer films were prepared by the the Langmuir-Blodgett method at a surface pressure of 30 nN/m. The symmetric nature of the bilayer was used to determine the Tm of bilayers by measuring the intensity of the symmetric methyl stretch at 2875 cm-1 from the lipid fatty acid chains as a function of temperature. A maximum in the CH3 symmetric stretch transition was observed at the Tm of the lipid film due to the reduction of symmetry in the bilayer. The SFG measured Tm for DPPC, DHPC, and DSPC were 41.0 +/- 0.4, 52.4 +/- 0.7, and 57.9 +/- 0.5 degrees C, respectively. These values correlate well with the literature values of 41.3 +/- 1.8, 49 +/- 3, and 54.5 +/- 1.5 degrees C for DPPC, DHPC, and DSPC, respectively obtained by differential scanning calorimetry (DSC) of lipid vesicles in solution. The high degree of correlation between the SFG spectroscopic measurements and the DSC results suggests the Tm of these lipids is not significantly altered upon immobilization on a surface.  相似文献   

19.
We have developed the technique of femtosecond stimulated Raman spectroscopy (FSRS), which allows the rapid collection of high-resolution vibrational spectra on the femtosecond time scale. FSRS combines a sub-50 fs actinic pump pulse with a two-pulse stimulated Raman probe to obtain vibrational spectra whose frequency resolution limits are uncoupled from the time resolution. This allows the acquisition of spectra with <100 fs time resolution and <30 cm(-1) frequency resolution. Additionally, FSRS is unaffected by background fluorescence, provides rapid (100 ms) acquisition times, and exhibits traditional spontaneous Raman line shapes. FSRS is used here to study the relaxation dynamics of beta-carotene. Following optical excitation to S(2) (1B(u) (+)) the molecule relaxes in 160 fs to S(1) (2A(g) (-)) and then undergoes two distinct stages of intramolecular vibrational energy redistribution (IVR) with 200 and 450 fs time constants. These processes are attributed to rapid (200 fs) distribution of the internal conversion energy from the S(1) C=C modes into a restricted bath of anharmonically coupled modes followed by complete IVR in 450 fs. FSRS is a valuable new technique for studying the vibrational structure of chemical reaction intermediates and transition states.  相似文献   

20.
Sum frequency generation spectroscopy, SFG, was used for the surface characterization at the gas-liquid interface of the 1-butyl-3-methylimidazolium cation combined with the following anions: Br-, I-, PF6-, BF4-, (CF3SO2)2N- (imide), SCN-, CH3SO3- (MeSO3), CH3SO4- (MS), and (CN)2N- (DCN). The SFG spectra obtained for the different ionic liquids were similar independent of the anion selected; therefore, a comprehensive analysis for the surface characterization of the ionic liquids' cation was focused only on the PF6- and Br- anion combinations. For an accurate identification of the vibrational modes observed, FT-IR and Raman spectroscopy in combination with isotopic labeling with deuterium and polarized Raman spectroscopy was used. The cation orientation was determined by analysis of polarization-dependent SFG spectra. For a compound dried in a vacuum to < or = 2 x 10(-5) Torr, the cation appears to be oriented with the ring laying flat along the surface plane and the butyl chain projecting into the gas phase independent of the anion identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号