首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FDU-1 silicas with large cage-like pores (diameter about 10 nm) were synthesized under acidic conditions from tetraethyl orthosilicate in the presence of a poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer template B50-6600 (EO(39)BO(47)EO(39)). High-resolution transmission electron microscopy and small-angle X-ray scattering provided strong evidence that FDU-1 silica synthesized under typical conditions is a face-centered cubic Fm3m structure with 3-dimensional hexagonal intergrowth and is not a body-centered cubic Im3m structure, as originally reported. Samples synthesized in a wide range of conditions (initial temperatures from 298 to 353 K; hydrothermal treatment at 333-393 K) exhibited similar XRD patterns and their nitrogen adsorption isotherms indicated a good-quality cage-like pore structure. The examination of low-pressure nitrogen adsorption isotherms for FDU-1 samples, whose pore entrance diameters were evaluated using an independent method, allowed us to conclude that low-pressure adsorption was appreciably stronger for samples with smaller pore entrance sizes. This prompted us to examine low-pressure adsorption isotherms for a wide range of samples and led us to a conclusion that the FDU-1 pore entrance size can be systematically enlarged from about 1.3 nm (perhaps even lower) to at least 2.4 nm without an appreciable loss of uniformity by increasing the temperature of the hydrothermal treatment or the initial synthesis. Further enlargement of pore entrance size was achieved for sufficiently long hydrothermal treatment times at temperatures of 373 K or higher, as seen from the shape of nitrogen desorption isotherms. This allowed us to obtain samples with uniform pore sizes, high adsorption capacity, and with pore entrances enlarged so much that their size was similar to the size of the pore itself, resulting in a highly open porous structure. However, in the latter case, there was evidence that the pore entrance size distribution was quite broad.  相似文献   

2.
Four samples of MCM-41 mesoporous silicas whose average pore diameters are 2.4, 2.8, 3.2, and 3.6 nm were prepared using sodium orthosilicate and cationic surfactants of [CH(3)(CH(2))(n)N(CH(3))(3)]X (n=11, 13, 15, 17). These four samples were calcined at 1123 K in vacuo to obtain the dehydroxylated samples, which were further rehydroxylated at 298 K to obtain the rehydroxylated samples. The adsorption isotherms of nitrogen gas (77 K) for the 12 MCM-41 mesoporous silicas are of Type IVc, giving no adsorption hysteresis. On the other hand, the first adsorption isotherms of water vapor (298 K) for the dehydroxylated MCM-41 samples are quite different from those of nitrogen gas, giving the remarkable adsorption hysteresis. The second water isotherms for the rehydroxylated MCM-41 samples are of Type IV, showing slight hysteresis. Using the nitrogen isotherms, the relation between the pore size and carbon chain length of the surfactant has been determined, and the effect of dehydroxylation and rehydroxylation on the porous texture has been examined. Using the first and second water isotherms, the adsorption model of physisorbed waters adsorbed on the surface silanol groups has been proposed. From the pore size distribution curves of nitrogen and water, the presence of constrictions in the cylindrical pores has been predicted. Copyright 2000 Academic Press.  相似文献   

3.
Hierarchical aluminas with pore sizes ranging from a few nanometers to micrometers were obtained using an one-pot sol?Cgel synthesis. The aluminas were synthesized under acid conditions from aluminum isopropoxide in presence of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer template and decahydronaphthalene as emulsifier agent. High-resolution transmission electron microscopy, small-angle X-ray scattering, nitrogen physisorption isotherms and mercury intrusion porosimetry provided evidences of porous structure at different hierarchical levels. The produced aluminas possess hierarchical structure composed of different family of pores that coexist in form of cylinders, pyramids and stacking of platelets. The morphology observed by electron microscopy suggests that the cylindrical pores result from the stacking platelets and that the cylinders and pyramidal pores form the walls of macropores of circular section. These aluminas with hierarchical porous architecture present large surface areas (ca. 435?m2 g?1) and pore volumes (ca. 2.1?cm3 g?1), tunable pore-size distributions and good thermal stability.  相似文献   

4.
Poly(ethylene oxide)-poly(methyl acrylate) diblock copolymers with narrow molecular weight distributions were synthesized using atom transfer radical polymerization. The copolymers were used as micellar templates for the synthesis of mesoporous silicas. The products were characterized using small-angle X-ray scattering, transmission electron microscopy (TEM) and nitrogen adsorption. The obtained silicas exhibited two-dimensional hexagonal structures of cylindrical mesopores, and thus can be classified as SBA-15 silicas. In some cases, the size of ordered domains was very small. The (100) interplanar spacings were 13–17 nm, depending on the size of the diblock copolymer used and on the synthesis conditions. Nitrogen adsorption showed that the silicas exhibited specific surface areas of 350–800 m2 g−1, pore volumes ∼1 cm3 g−1, and narrow pore size distributions. The BJH (nominal) pore diameters were up to ∼20 nm, but actual diameters of cylindrical pores are expected to be somewhat smaller. In many cases, the mesopores exhibited constrictions.  相似文献   

5.
In this work, the X-ray diffraction structure modeling was employed for analysis of hexagonally ordered large-pore silicas, SBA-15, to determine their pore width independently of adsorption measurements. Nitrogen adsorption isotherms were used to evaluate the relative pressure of capillary condensation in cylindrical mesopores of these materials. This approach allowed us to extend the original Kruk-Jaroniec-Sayari (KJS) relation (Langmuir 1997, 13, 6267) between the pore width and capillary condensation pressure up to 10 nm instead of previously established range from 2 to 6.5 nm for a series of MCM-41 and to improve the KJS pore size analysis of large pore silicas.  相似文献   

6.
We report results of nitrogen and argon adsorption experiments performed at 77.4 and 87.3 K on novel micro/mesoporous silica materials with morphologically different networks of mesopores embedded into microporous matrixes: SE3030 silica with worm-like cylindrical channels of mode diameter of approximately 95 angstroms, KLE silica with cage-like spheroidal pores of ca. 140 angstroms, KLE/IL silica with spheroidal pores of approximately 140 angstroms connected by cylindrical channels of approximately 26 angstroms, and, also for a comparison, on Vycor glass with a disordered network of pores of mode diameter of approximately 70 angstroms. We show that the type of hysteresis loop formed by adsorption/desorption isotherms is determined by different mechanisms of condensation and evaporation and depends upon the shape and size of pores. We demonstrate that adsorption experiments performed with different adsorptives allow for detecting and separating the effects of pore blocking/percolation and cavitation in the course of evaporation. The results confirm that cavitation-controlled evaporation occurs in ink-bottle pores with the neck size smaller than a certain critical value. In this case, the pressure of evaporation does not depend upon the neck size. In pores with larger necks, percolation-controlled evaporation occurs, as observed for nitrogen (at 77.4 K) and argon (at 87.3 K) on porous Vycor glass. We elaborate a novel hybrid nonlocal density functional theory (NLDFT) method for calculations of pore size distributions from adsorption isotherms in the entire range of micro- and mesopores. The NLDFT method, applied to the adsorption branch of the isotherm, takes into account the effect of delayed capillary condensation in pores of different geometries. The pore size data obtained by the NLDFT method for SE3030, KLE, and KLE/IL silicas agree with the data of SANS/SAXS techniques.  相似文献   

7.
交联聚苯乙烯型多孔吸附剂的中孔性质研究   总被引:12,自引:0,他引:12  
采用77K温度下的氮气吸附方法,测定了经悬浮聚合制备的不同交联度的交联聚苯乙烯多孔吸附剂的吸附/脱附等温线.根据BET吸附模型计算了比表面,由吸附量计算了总的孔体积,由孔体积和比表面计算出平均孔径,并依据脱附等温线采用BJH方法计算孔径分布.结果表明,交联度对交联聚苯乙烯多孔吸附剂的孔结构均具有显著影响.随着交联聚苯乙烯多孔吸附剂的交联度升高,其孔径变小,比表面增大,而且低交联度吸附剂的中孔接近圆柱形,高交联吸附剂的中孔形状接近“墨水瓶”形.显然,交联度对孔性质的影响与孔结构在交联聚苯乙烯多孔吸附剂制备和后处理过程中的稳定性密切相关.交联度低时,初期形成的小孔不能保持稳定,在后续聚合及后处理过程中合并为大孔,结果造成低交联吸附剂大孔径、低比表面的现象.通过对孔径分布的研究,揭示了不同吸附剂在中孔范围内的孔特征,并对其形成机制进行了分析.  相似文献   

8.
改性Y沸石的孔结构与催化性能   总被引:2,自引:0,他引:2  
测定了不同方法改性的Y沸石样品的N_2吸附和脱附等温线, 并计算了样品的微孔、大孔和二次孔的孔容和表面积, 以及样品的二次孔分布, 证实改性方法对样品的孔结构有显著的影响。同时, 还考察了不同尺码探针分子在改性Y沸石样品上的酸催化反应活性, 将所得数据与样品的酸量、酸强度和二次孔容相关联, 取得了满意的结果。说明对大尺码反应分子, 改性过程中生成的大孔径二次孔, 对提高沸石催化剂的反应活性是有利的。  相似文献   

9.
The estimates of the complete filling of narrow cylindrical pores in mesoporous materials of the MSM-41 type for adsorbates modeling argon atoms and nitrogen molecules calculated with and without the inclusion of the size factor have been compared. Calculations in the framework of the lattice gas model have been performed for pores with diameters from 2 to 10 nm. This size range is divided into three subranges: in the first size subrange where a fluid has a quasi-one-dimensional behavior (up to 4 nm), there is a qualitative difference between the isotherms; in the second subrange of pore sizes (up to 7 nm), the inclusion of the size factor leads to quantitative differences in the estimates of the total pore volume; for pores with diameters >7 nm, the size factor has no effect on the estimates of the volume filling of cylindrical pores.  相似文献   

10.
To examine the nature of the lower closure point of adsorption hysteresis in ordered mesoporous silicas, we measured the temperature dependence of the adsorption-desorption isotherm of nitrogen for three kinds of ordered silicas with cagelike pores and three kinds of ordered silicas with cylindrical pores. The lower closure point pressure of nitrogen in the cagelike pores with sufficiently small necks, that is, the cavitation pressure of a confined liquid, did not depend appreciably on the cage size in the temperature region far away from a hysteresis critical temperature (Tch) but its cage-size dependence was noticeable in the vicinity of Tch. The lower closure point in the cylindrical pores depended on the pore size, and its thermal behavior was totally different from that in the cagelike pores. Nevertheless, the hysteresis critical points of nitrogen in the ordered mesoporous silicas, which are defined as a threshold of temperatures (Tch) and pressure above which reversible capillary condensation takes place in a given size and shape of pores, fell on a common line in a temperature-pressure diagram regardless of the pore geometries. We consider this finding as evidence that capillary evaporation in the cylindrical pores follows a cavitation process in the vicinity of Tch in the same way as that in the cagelike pores and also that the low limit of the hysteresis loop that has been long recognized since 1965 is due to the occurrence of a vapor bubble in a stretched metastable liquid confined to the pores with decreasing pressure (cavitation).  相似文献   

11.
室温下以十六烷基三甲基溴化铵(CTAB)为模板剂, 正硅酸乙酯(TEOS)为硅源, 氨水(质量分数25%)为催化剂, 在水-乙醇-乙醚作共溶剂的体系中以氨基化的实心二氧化硅(NH2-sSiO2)为添加剂, 制备了放射孔二氧化硅及其核壳结构(sSiO2@rSiO2). 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、小角X射线衍射(XRD)、氮气吸附-脱附实验和孔径分布测定对其进行了表征和分析. 结果表明, 合成的产物为0.4~1 μm的球形粒子, 球上存在多级放射状孔道结构, 孔径从3 nm到几十纳米的多级孔径并存, 样品的Brunauer-Emmett-Teller(BET)比表面积为996 m2/g. 最后对放射孔二氧化硅的形成机理及核壳结构的影响因素进行了初步探讨.  相似文献   

12.
Mesoporous silicas such as SBA-15 and MCM-41 are being actively investigated for potential applications in catalysis, separations, and synthesis of nanostructured materials. A new method for functionalizing these mesoporous silicas with aromatic phenols is described. The resulting novel hybrid materials possess silyl aryl ether linkages to the silica surface that are thermally stable to ca. 550 degrees C, but can be easily cleaved at room temperature with aqueous base for quantitative recovery of the organic moieties. The materials have been characterized by nitrogen physisorption, FTIR, NMR, and quantitative analysis of surface coverages. The maximum densities of 1,3-diphenylpropane (DPP) molecules that could be grafted to the surface were less than those measured on a nonporous, fumed silica (Cabosil) and were also found to decrease as a function of decreasing pore size (5.6-1.7 nm). This is a consequence of steric congestion in the pores that is magnified at the smaller pore sizes, consistent with parallel studies conducted using a conventional silylating reagent, 1,1,3,3-tetramethyldisilazane. Pyrolysis of the silica-immobilized DPP revealed that pore confinement leads to enhanced rates and altered product selectivity for this free-radical reaction compared with the nonporous silica, and the rates and selectivities also depended on pore size. The influence of confinement is discussed in terms of enhanced encounter frequencies for bimolecular reaction steps and pore surface curvature that alters the accessibility and resultant selectivity for hydrogen transfer steps.  相似文献   

13.
Ordered porous silicas with unprecedented loadings of pendant vinyl groups have been synthesized via co-condensation of tetraethyl orthosilicate (TEOS) and triethoxyvinylsilane (TEVS) under basic conditions in the presence of cetyltrimethylammonium surfactant. The resulting organosilicate-surfactant composites exhibited at least one low-angle X-ray diffraction (XRD) peak up to the TEVS:TEOS molar ratio of 7:3 (70% TEVS loading) in the synthesis gel. The surfactant was removed from these composites without any structural collapse. Nitrogen adsorption provided strong evidence of the presence of uniformly sized pores and the lack of phase separation up to TEVS:TEOS ratios as high as 13:7 (65% TEVS loading), whereas (29)Si MAS NMR and high-resolution thermogravimetry showed essentially quantitative incorporation of the organosilane. Thus, a hitherto unachieved loading level for pendant groups, considered by many to be impossible to achieve for stable organosilicas because of the expected framework connectivity constraints, has been obtained. The resulting vinyl-functionalized silicas exhibited gradually decreasing pore diameter (from 2.8 to 1.7 nm for TEVS loadings of 25-65%) and pore volume as the loading of pendant groups increased, but the specific surface area was relatively constant. Because of the reactivity of vinyl groups, ordered silicas with very high loadings of these groups are expected to be robust starting materials for the synthesis of other organic-functionalized ordered microporous materials. Herein, we demonstrate that these starting materials can also be transformed via calcination into ordered microporous silicas with pore diameters tailorable from 2.5 to as little as 1.4 nm simply by using an appropriate loading of the vinyl-functionalized precursor. This ease of the micropore size adjustment and the attained degree of structural ordering (as judged from XRD) have not been reported before. The novel ordered microporous materials reported herein are promising as adsorbents and catalyst supports.  相似文献   

14.
Changes in density and surface tension of water in silica pores   总被引:3,自引:0,他引:3  
 The density and surface tension of water in small pores of silicas have been investigated. These physical properties of water in the pores were calculated from a comparison of pore volumes and pore radii which were estimated from adsorption and desorption isotherms of nitrogen and water. Below a pore radius of about 5 nm both the density and the surface tension of water in the pores were smaller than those of the bulk liquid and decreased with a decrease in pore size. The density of water in the pores decreased with an increase in the concentration of surface hydroxyl groups. Similarly the surface tension of water in the pores is influenced by the surface hydroxyl groups. Anomalous changes in the density and surface tension of the water in the pores are attributed to the interaction of water molecules with surface hydroxyl groups and hydrogen-bond formation among water molecules. Received: 20 April 1999 Accepted in revised form: 17 November 1999  相似文献   

15.
Large-pore SBA-15 silicas were synthesized using poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer Pluronic P123 as a template and hexane as a micelle expander. The reaction was initially carried out at 15 degrees C, followed by the heating of the synthesis gel at temperatures from 40 to 130 degrees C. Small-angle X-ray scattering data indicate that highly ordered two-dimensional hexagonal material (SBA-15 structure) formed at 15 degrees C and was preserved even after 5 days of heating at 130 degrees C. The unit-cell parameter for as-synthesized SBA-15 silicas was about 16.5 nm and increased only slightly after the heat treatment, whereas the unit-cell parameter after calcination was appreciably larger (16 vs 14 nm) for materials that were subjected to the thermal treatment. The pore size distribution of SBA-15 formed at 15 degrees C was narrow and centered at approximately 9.5 nm, which is close to the upper limit of pore diameters typically reported for SBA-15. The presence of constrictions in the pores of this material was evident. The heat treatment led to the elimination of the constrictions and to the pore diameter increase to 15 nm or more, tailored by the selection of appropriate treatment temperature and time. The pore size increase was the fastest during the first day of treatment, but it continued for at least 5 days. The pore size distribution broadened as the time of the treatment increased beyond 1 day. The pore size increase appears to be primarily related to the decrease in the degree of shrinkage during the calcination (removal of the template) and the decrease in the pore wall thickness.  相似文献   

16.
Assembly of mesostructured silica using Pluronic P123 triblock copolymer (EO(20)-PO(70)-EO(20)) and n-butanol mixture is a facile synthesis route to the MCM-48-like ordered large mesoporous silicas with the cubic Iad mesostructure. The cubic phase domain is remarkably extended by controlling the amounts of butanol and silica source correspondingly. The extended phase domain allows synthesis of the mesoporous silicas with various structural characteristics. Characterization by powder X-ray diffraction, nitrogen physisorption, scanning electron microscopy, and transmission electron microscopy reveals that the cubic Iad materials possess high specific surface areas, high pore volumes, and readily tunable pore diameters in narrow distribution of sizes ranging from 4 to 12 nm. Moreover, generation of complementary pores between the two chiral channels in the gyroid Iad structure can be controlled systematically depending on synthesis conditions. Carbon replicas, using sucrose as the carbon precursor, are obtained with either the same Iad structure or I4(1)/a (or lower symmetry), depending on the controlled synthesis conditions for silica. Thus, the present discovery of the extended phase domain leads to facile synthesis of the cubic Iad silica with precise structure control, offering vast prospects for future applications of large-pore silica materials with three-dimensional pore interconnectivity.  相似文献   

17.
The freezing mechanism of water contacted with mesoporous silicas with uniform pore shapes, both cylindrical and cagelike, was studied by thermodynamic and structural analyses with differential scanning calorimetry (DSC) and X-ray diffraction (XRD) together with adsorption measurements. In the DSC data extra exothermic peaks were found at around 230 K for water confined in SBA-15, in addition to that due to the freezing of pore water. These peaks are most likely to be ascribed to the freezing of water present over the micropore and/or mesopore outlets of coronas in SBA-15. Freezing of water confined in SBA-16 was systematically analysed by DSC with changing the pore size. The freezing temperature was found to be around 232 K, close to the homogeneous nucleation temperature of bulk water, independent of the pore size when the pore diameter (d) < 7.0 nm. Water confined in the cagelike pores of SBA-16 is probably surrounded by a water layer (boundary water) at the outlets of channels to interconnect the pores and of fine corona-like pores, which is similar to that present at the outlet of cylindrical pores in MCM-41 and of cylindrical channels in SBA-15. The presence of the boundary water would be a key for water in SBA-16 to freeze at the homogeneous nucleation temperature. This phenomenon is similar to those well known for water droplets in oil and water droplets of clouds in the sky. The XRD data showed that the cubic ice I(c) was formed in SBA-16 as previously found in SBA-15 when d < 8.0 nm.  相似文献   

18.
Isotherms of capillary condensation are often used to determine the vapor sorption capacity of porous adsorbents as well as the pore size distribution by radii. In this paper, for calculating the volume of capillary condensate and of adsorption films in a porous body, an approach based on the theory of surface forces is used. Adsorption isotherms and disjoining pressure isotherms of wetting films are presented here in an exponential form discussed earlier. The calculations were made for straight cylindrical capillaries of different radii and slit pores of different width. The mechanisms of capillary condensation differ in cylindrical and slit pores. In cylindrical pores capillary condensation occurs due to capillary instability of curved wetting films on a capillary surface, when film thickness grows. In the case of slit pores, coalescence of wetting films formed on opposite slit surfaces proceeds under the action of attractive dispersion forces. Partial volumes of liquid in the state of both capillary condensate and adsorbed films are calculated dependent on the relative vapor pressure in a surrounding media. Copyright 2000 Academic Press.  相似文献   

19.
We combine here a regularization procedure with individual adsorption isotherms obtained from grand canonical Monte Carlo simulations in order to obtain reliable pore size distributions. The methodology is applied to two hexagonal high-ordered silica materials: SBA-15 and PHTS, synthesized in our laboratory. Feasible pore size distributions are calculated through an adaptable procedure of deconvolution over the adsorption integral equation, with two necessary inputs: the experimental adsorption data and individual adsorption isotherms, assuming the validity of the independent pore model. The application of the deconvolution procedure implies an adequate grid size evaluation (i.e., numbers of pores and relative pressures to be considered for the inversion, or kernel size), the fulfillment of the discret Picard condition, and the appropriate choice of the regularization parameter (L-curve criteria). Assuming cylindrical geometry for both porous materials, the same set of individual adsorption isotherms generated from molecular simulations can be used to construct the kernel to obtain the PSD of SBA-15 and PHTS. The PSD robustness is measured imposing random errors over the experimental data. Excellent agreement is found between the calculated and the experimental global adsorption isotherms for both materials. Molecular simulations provide new insights into the studied systems, pointing out the need of high-resolution isotherms to describe the presence of complementary microporosity in these materials.  相似文献   

20.
Mesoporous silica materials were synthesized using tetraеthoxysilane as precursor and liquid crystals formed in aqueous mixtures of cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) as templates, without and with the addition of NaBr or Na2SO4. For this purpose, the formation of liquid crystals as a function of the ratio of CTAB and SDS under different conditions was studied. It was found that liquid crystals formed in the mixed system of CTAB and SDS at certain mixing ratios are well-structured templates for the synthesis of mesoporous silicas. The synthesized silica materials were characterized by transmission electron microscope and nitrogen adsorption/desorption analysis. The pore size of mesoporous silicas could be controlled between 3 to 6 nm by simply changing the concentration of NaBr in solution. The mesoporous silicas exhibited lamellar structure and the order of structural arrangement was promoted with addition of NaBr. However, addition of Na2SO4 led to ink-bottle type pores of mesoporous silica with a narrow pore size distribution of around 2 nm and a higher specific surface area of 610 m2 g–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号