首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The thin-film photocatalysts TiO2/MoO3 and TiO2/MoO3:V2O5 obtained by a combination of sol–gel and sintering techniques were studied using the photooxidation of probing dyes, EPR spectroscopy, X-ray diffraction analysis, and electron microscopy. It was shown that due to charge accumulation caused by UV irradiation, these photocatalysts retain their oxidative activity and ability for self-sterilization in the dark for a long time after irradiation was terminated (up to 5 h for TiO2/MoO3:V2O5).  相似文献   

3.
Structural properties of amorphous TiO2 spherical nanoparticles have been studied in models with different sizes of 2 nm, 3 nm, 4 nm and 5 nm under non-periodic boundary conditions. We use the pairwise interatomic potentials proposed by Matsui and Akaogi. Models have been obtained by cooling from the melt via molecular dynamics (MD) simulation. Structural properties of an amorphous nanoparticle obtained at 350 K have been analyzed in detail through the partial radial distribution functions (PRDFs), coordination number distributions, bond-angle distributions and interatomic distances. Moreover, we show the radial density profile in a nanoparticle. Calculations show that size effects on structure of a model are significant and that if the size is larger than 3 nm, amorphous TiO2 nanoparticles have a distorted octahedral network structure with the mean coordination number ZTi-O ≈6.0 and ZO-Ti ≈3.0 like those observed in the bulk. Surface structure and surface energy of nanoparticles have been obtained and presented.  相似文献   

4.
J. Nowotny  T. Bak  T. Burg 《Ionics》2007,13(2):71-78
The equilibration kinetics was determined for high purity polycrystalline TiO2 in the temperature range of 1,123–1,323 K, within a wide range of oxygen activity, . The equilibration kinetics experiments were performed within narrow p(O2) ranges. The obtained kinetic data were used for the determination of the chemical diffusion coefficient, D chem, which exhibits a complex dependence of p(O2). The D chem data are considered in terms of the effect of defect disorder on the mass transport kinetics in the chemical potential gradient. The reported diffusion data may be used for prediction of optimized processing conditions required to impose a homogeneous distribution of oxygen activity within the TiO2 specimen. This project was performed as part of University of New South Wales R&D program on solar hydrogen.  相似文献   

5.
The optical spectra of Cu2O and TiO2 nanopowders have been studied, which contain information about structural defects and are of interest in the search for optimum regimes providing the synthesis of ferromagnetic nanocrystals with Curie temperatures above room temperature.  相似文献   

6.
Titanium oxides are used in a wide variety of technological applications where surface properties play a role. TiO2 surfaces, especially the (110) face of rutile, have become prototypical model systems in the surface science of metal oxides. Reduced TiO2 single crystals are easy to work with experimentally, and their surfaces have been characterized with virtually all surface-science techniques. Recently, TiO2 has also been used to refine computational ab initio approaches and to calculate properties of adsorption systems. Scanning tunneling microscopy (STM) studies have shown that the surface structure of TiO2(110) is more complex than originally anticipated. The reduction state of the sample, i.e. the number and type of bulk defects, as well as the surface treatment (annealing in vacuum vs. annealing in oxygen), can give rise to different structures, such as two different (1×2) reconstructions, a ‘rosette’ overlayer, and crystallographic shear planes. Single point defects can be identified with STM and influence the surface chemistry in a variety of ways; the adsorption of water is discussed as one example. The growth of a large number of different metal overlayers has been studied on TiO2(110). Some of these studies have been instrumental in furthering the understanding of the ‘strong metal support interaction’ between group-VIII metals and TiO2, as well as low-temperature oxidation reactions on TiO2-supported nanoscopic gold clusters. The growth morphology, interfacial oxidation/reduction reaction, thermal stability, and geometric structure of ultra-thin metal overlayers follow general trends where the most critical parameter is the reactivity of the overlayer metal towards oxygen. It has been shown recently that the technologically more relevant TiO2 anatase phase can also be made accessible to surface investigations. Received: 4 March 2002 / Accepted: 20 October 2002 / Published online: 5 February 2003 RID="*" ID="*"Corresponding author. Fax: +1-504/862-8279, E-mail: diebold@tulane.edu  相似文献   

7.
Two sets of samples of SnO2/In2O3/TiO2 system have been fabricated with different concentrations of component materials. In the first set TiO2 with rutile structure was used, while in the second set it has the structure of anatase. Thin films (up to 50 nm) of obtained mixtures were deposited. Their sensitivity and selectivity with respect to methane (CH4) were studied. Nanostructure on the basis of 70%SnO2 — 10%In2O3 — 20%TiO2(anatase) exhibits sufficient sensitivity to methane.  相似文献   

8.
A precursor of TiO2–LiCo1/3Ni1/3Mn1/3O2 was prepared by electrostatic self-assembly method. The final product was obtained by heating the precursor at 400–450 °C for 4–6 h in air. X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical tests were used to examine the structural, morphology, elementary valence, and electrochemical characteristics. XRD indicated that the TiO2-coated material can be indexed by α-NaFeO2 layered structure, which belongs to hexagonal-type space group R3m. XPS results confirmed the existence of TiO2 compound on the surface of the coated sample. The SEM image showed that the material had spherically porous morphology with the uniform size about 6 μm. The initial charge–discharge capacity of the TiO2-coated LiCo1/3Ni1/3Mn1/3O2 material was 168.8/160.0 mAh/g. After 60 cycles, the discharge capacity of the TiO2-coated LiCo1/3Ni1/3Mn1/3O2 sample was 147.0 mAh/g, and the coulombic efficiency was 94.0%. Compared with the uncoated sample, the electrochemical performance of TiO2-coated LiCo1/3Ni1/3Mn1/3O2 was improved.  相似文献   

9.
Complex impedance analysis of a valence-compensated perovskite ceramic oxide Na1/2Sm1/2TiO3, prepared by a mixed oxide (solid-state reaction) method, has been carried out. The formation of single-phase material was confirmed by X-ray diffraction studies, and it was found to be an orthorhombic phase at room temperature. In a scanning electron microscope, grains separated by well-defined boundaries are visible, which is in good agreement with that of impedance analysis. Alternating current impedance measurements were made over a wide temperature range (31–400 °C) in an air atmosphere. Complex impedance and modulus plots helped to separate out the contributions of grain and grain boundaries to the overall polarization or electrical behavior. The physical structure of the samples was visualized most prominently at higher temperatures (275 °C) from the Nyquist plots showing inter- and intragranular impedance present in the material. The frequency dependence of electrical data is also analyzed in the framework of the conductivity and modulus formalisms. The bulk resistance, evaluated from the impedance spectrum, was observed to decrease with rise in temperature, showing a typical negative temperature coefficient of resistance-type behavior like that of semiconductors. The modulus mechanism indicates the non-Debye type of conductivity relaxation in the materials, which is supported by the impedance data. PACS 77.22.Ch; 77.22.Ej; 77.22.Gm; 77.22.Jp; 77.84.Bw  相似文献   

10.
The interfaces between metal electrodes and the oxide in TiO2-based memristive switches play a key role in the switching as well as in the IV characteristics of the devices in different resistance states. We demonstrate here that the work function of the metal electrode has a surprisingly minor effect in determining the electronic barrier at the interface. In contrast, Ti oxides can be readily reduced by most electrode metals. The amount of oxygen vacancies created by these chemical reactions essentially determines the electronic barrier at the device interfaces.  相似文献   

11.
Photogreying, the change in brightness on UV irradiation in the absence of oxygen, of TiO2 nanoparticulate dispersions is shown to depend on the nature of the liquid, consistent with a surface reaction. Measurements on a series of TiO2 particles (mainly 75×10 nm) dispersed in, e.g., alkyl benzoate correlate well with those on the same TiO2’s dispersed in a second liquid (e.g. propan-2-ol). Photogreying in propan-2-ol is paralleled by photocatalytic-oxidation activity, indicating a common origin – UV-generation of charge carriers. Further, photogreying parallels Ti3+ formation. Hence, although appearance and the visible spectra of photogreyed particles both differ from those of Ti3+ in ≤10 nm colloidal TiO2, we suggest that photogreying is caused by capture of UV excited electrons to form Ti3+. Surface treatment reduces photogreying, and we speculate that differences between uncoated samples reflect differences in the number of potentially reducible Ti’s.  相似文献   

12.
Structure and optical properties of ZnSe/SiO2 layered nanocomposites obtained using microwave magnetron sputtering have been studied. The nanocomposites are X-ray amorphous at relatively small thicknesses of the zinc selenide layers. When the thickness of the zinc selenide layers exceeds 20 Å, ZnSe/SiO2 films contain SiO2 amorphous phase and zinc selenide cubic nanocrystallites. It has been demonstrated that the thickness of zinc selenide layers affects the microstresses, refractive index, and band gap.  相似文献   

13.
The polycrystalline samples of Ba-modified Pb(Fe1/2Nb1/2)O3 (i.e., (Pb1-xBax)(Fe1/2Nb1/2)O3 PBFN, with x=0,0.05,0.07) were synthesized by a mechanosynthesis (i.e., high-energy ball milling) route followed by a mixed oxide method. Structural analysis provides the information on formation of single-phase orthorhombic structure on substitution of a small amount (x=0.07) of Ba at the Pb-site of Pb(Fe0.50Nb0.50)O3 (PFN). The ferroelectric–paraelectric phase transition in PFN was observed at 383 K, which decreases on increasing Ba-concentration in PBFN. Detailed studies of dielectric properties of PBFW show the following: (i) diffuse phase transition, (ii) low loss tangent, (iii) low activation energy, and (iv) low frequency dielectric dispersion. An anomaly in the ac conductivity was found very close to phase transition temperature. The activation energy is found to decrease from 0.19 to 0.01 eV on increasing Ba-concentration to 7% (x=0.07). Temperature field-dependent magnetization measurements of all the samples showed antiferromagnetic transition at ∼15 K (for x=0.07). PBFN sample showed a slight increase in the coercivity (i.e., from 400 Oe (PFN) to 500 Oe (PBFN, for x=0.07) at 2 K. PACS 61.10.Nz; 68.37.Hk; 75.50.Ss; 75.60.Ej; 77.22.Ch; 77.22.Gm  相似文献   

14.
In this study, FeNi3/Al2O3 core-shell nanocomposites, where individual FeNi3 nanoparticles were coated with a thin layer of alumina, were fabricated by a modified sol-gel method. Several physical characterizations were performed on the samples of FeNi3/Al2O3 nanocomposites with different thickness of Al2O3 shell. The encapsulation of FeNi3 nanoparticles with alumina stops FeNi3 agglomeration during heat treatment, and prevents interaction among the closely spaced magnetic FeNi3 nanoparticles. The Al2O3 insulating shell improves the soft magnetic properties of FeNi3. The study of the complex permeability of the samples shows that the real part μ’ of the permeability of the sample with Al molar content of 20% (Al/(Fe+Ni)) is as high as 12, and independent of frequency up to at least 1 GHz. The tunneling magnetoresistance arising from the presence of the Al2O3 shell have also been studied.  相似文献   

15.
The present work reports semiconducting properties of high purity TiO2 determined in the gas/solid equilibrium, as well as during controlled heating and cooling in the range 300–1,273 K. The activation energy of the electrical conductivity is considered in terms of the activation enthalpy of the formation of ionic defects and the activation enthalpy of the mobility of electronic defects. These data, determined from the dynamic electrical conductivity experiments, are compared to the electrical conductivity data determined in equilibrium. It is shown that only the equilibrium electrical conductivity data for high-purity TiO2 are well defined. It is shown that the activation energy of the electrical conductivity determined in equilibrium differs substantially from that for the dynamic electrical conductivity data during cooling and heating. It is concluded that the formation enthalpy term determined from the dynamic conductivity data is determined by the heating/cooling rate rather than materials’ properties.  相似文献   

16.
Visible light Bi2O3/TiO2 nanocomposites are successfully prepared with different dosages of Bi2O3 by hydrothermal process. All the as-prepared samples are characterized by X-ray diffraction (XRD), scanning and transmission electron microscopes (SEM and TEM), Brunauer-Emmett-Teller analysis (BET), N2 adsorption-desorption measurement, and UV-Vis diffuse reflectance spectra (DRS). XRD and Raman spectra reveal the anatase phase of both TiO2 and Bi2O3/TiO2 nanocomposites. X-ray diffraction patterns demonstrate that the bismuth ions did not enter into the lattice of TiO2, and Bi2O3 is extremely dispersive on the surface of TiO2 nanoparticles. The incorporation of Bi2O3 in TiO2 leads to the spectral response of TiO2 in the visible light region and efficient separation of charge carriers. The enhanced visible light activity is tested by the photocatalytic degradation of methyl orange under light illumination, and the performance of Bi2O3/TiO2 nanocomposites are superior than that of pure TiO2 which is ascribed to the efficient charge separation and transfer across the Bi2O3/TiO2 junction. Bi2O3/TiO2 nanocomposite (20 mg) loaded with 0.25 of Bi2O3 dispersed in 50 ml of 5 ppm methyl orange solution exhibited the highest photocatalytic activity of 98.86% within 240 min of irradiation, which is attributed to the low band gap, high surface area, and the strong interaction between Bi2O3 and TiO2.  相似文献   

17.
The semiconductor quantum dots (QDs) can be very efficient to tune the response of photocatalyst of TiO2 to visible light. In this study, CdS QDs formed in situ with about 8 nm have been successfully deposited onto the surfaces of TiO2 nanotubes (TNTs) to form TNTs/CdS QDs nanocomposites by use of a simple bifunctional organic linker, thiolactic acid. The diffuse reflectance spectroscopy (DRS) spectra of as prepared samples showed that the absorption edge of the TNTs/CdS composite is extended to visible range, with absorption edge at 530 nm. The photocatalytic activity and stability of TNTs/CdS were also evaluated for the photodegradation of rhodamine B. The results showed that when TNTs/CdS QDs was used, photocatalytic degradation of RhB under visible light irradiation reached 91.6%, higher than 45.4 and 30.5% for P25 and TNTs, respectively. This study indicated that the TNTs/CdS QDs nanocomposites were superior catalysts for photodegradation under visible light irradiation compared with TNTs and P25 samples, which may find wide application as a powerful photocatalyst in environmental field.  相似文献   

18.
The composition and magnetic properties of the powders extracted from CoFe2O4 aqueous suspensions and the CoFe2O4/PVA (PVA is polyvinyl alcohol) nanocomposites with a cobalt ferrite content of 10–30 wt % have been investigated using Mössbauer spectroscopy, transmission electron microscopy, and vibration magnetometry. The cationic formulas of the cobalt ferrites synthesized have been determined. The differences between samples synthesized at temperatures of 72.5 and 82.5°C have been revealed. The specific features of the observed changes in the agglomeration of CoFe2O4 particles after introducing into the PVA matrix have been studied. It has been shown that the iron ion distribution determined by Mössbauer spectroscopy in octahedral and tetrahedral lattice sites correlates with vibration magnetometry data.  相似文献   

19.
Electrical and optical properties of TiO2:Pd thin films deposited from Ti-Pd mosaic targets sputtered in reactive oxygen plasma have been studied. The properties were investigated for thin films with the Pd amount of 5.5 at. %, 8.4 at. % and 23 at. %. Based on resistivity measurements a drop from 103 down to almost 10−3Ωcm has been recorded when the Pd amount was varied from 5.5 at. % to 23 at. %, respectively. Moreover, it was shown that doping with different amounts of Pd results in the possibility of obtaining both types of electrical conduction: n-type for the TiO2 with 5.5 at. % and 8.4 at. % of Pd and p-type for the TiO2 with 23 at. % of Pd thin films. From optical measurements it has been found that as the Pd amount was increased the transmission through the thin films was reduced and position of the fundamental absorption edge was shifted toward a longer wavelength range of up to 600 nm. The optical band gap was calculated for direct and indirect transitions from optical absorption spectra. Structural properties were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The XRD patterns displayed occurrence of the crystalline, TiO2-rutile for lower Pd amounts (5.5 at. %, 8.4 at. %), while the TiO2:Pd (23 at. %) thin films displayed XRD-amorphous behaviour. Images obtained from AFM displayed dense, nanocrystalline structure with homogenous distribution of crystallites. Additionally performed secondary ion mass spectroscopy investigation confirmed homogenous distribution of Pd in the whole thickness of the prepared thin films.  相似文献   

20.
The magnetic, optical, and magnetooptical properties of granular (FePt)1?x(SiO2)x nanocomposites in the disordered state and after heat treatment were studied. The magnetooptical response of samples in which the concentration of the metallic component approached the percolation threshold was observed to become considerably enhanced. Modeling transverse Kerr effect (TKE) spectra in a straightforward effective medium approximation provided a qualitative fit to the experimental data over a broad concentration range. The dependences of the Kerr effect on the SiO2 concentration in the nanocomposite are not monotonic and exhibit a sharp break near the percolation threshold. An analysis of the field dependences of the TKE and magnetization curves revealed that structural changes associated with ordering in annealed FePt films occur only in nanocomposites with fairly large grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号