首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 993 毫秒
1.
The mixed-ligand complex formation in the system Cu2+−Edta4−−(CH2)6(NH2)2 (L), where L is hexamethylenediamine has been calorimetrically, pH-potentiometrically and spectrophotometrically studied in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO3). The thermodynamic parameters of formation of the CuEdtaL2−, CuEdtaHL (CuEdta)2L4− and (CuEdta)2En4− complexes have been determined. The most probable coordination mode for the complexone and the ancillary ligand in the mixed-ligand complexes was discussed.  相似文献   

2.
Geometry optimizations were performed on monoanionic and dianionic clusters of sulfate anions with carbon dioxide, SO4−1/−2(CO2) n , for n = 1–4, using the B3PW91 density functional method with the 6-311 + G(3df) basis set. Limited calculations were carried out with the CCSD(T) and MP2 methods. Binding energies, as well as adiabatic and vertical electron detachment energies, were calculated. No covalent bonding is seen for monoanionic clusters, with O3SO–CO2 bond distances between 2.8 and 3.0 ?. Dianionic clusters show covalent bonding of type [O3S–O–CO2]−2, [O3S–O–C(O)O–CO2]−2, and [O2C–O–S(O2)–O–CO2]−2, where one or two oxygens of SO4−2 are shared with CO2. Starting with n = 2, the dianionic clusters become adiabatically more stable than the corresponding monoanionic ones. Comparison with SO4−1/−2(SO2) n and CO3−1/−2(SO2) n clusters, the binding energies are smaller for the present SO4−1/−2(CO2) n systems, while stabilization of the dianion occurs at n = 2 for both SO4−2(CO2) n and SO4−2(SO2) n , but only at n = 3 for CO3−2(SO2) n .  相似文献   

3.
Two two-dimensional coordination complexes, {[Cu4(BTM)6(OPA)4] · 4DMF · 3H2O} n (1) and {[Cu(BDTM)(OH)](ClO4) · 2H2O} n (2) (BTM = bis(1,2,4-triazol-1-yl)methane, BDTM = bis(3,5-dimethyl-1,2,4-triazol-1-yl)methane, OPA2− = ortho-phthalic dianion, DMF = N,N-dimethylformamide), were synthesized and structurally characterized. Each Cu(II) ion locates in a distorted square pyramidal geometry in 1, in which OPA2− ligands bridge Cu2+ ions along a axis to form a magnetic transmission chain and BTM ligands act as flexible spacers to construct the two-dimensional layer structure. In 2, each Cu2+ ion adopts tetra-coordination geometry to two hydroxyl groups and two triazolyl nitrogen atoms from two different BDTM ligands. Two hydroxyl groups bridge two Cu2+ ions to form a rhombic diamond, and four BDTM ligands connect four diamonds to form a 36-membered macrocyclic structure with large channels along a axis. Magnetic properties revealed that both OPA2− and OH mediate anti-ferromagnetic interactions between Cu2+ ions with J = − 0.06(3) and −301.9(2) cm−1 for 1 and 2, respectively. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The formation of mixed-ligand complexes HgEdtaIm2−, HgEdtaL3−, HgEdtaHL2−, and (HgEdta)2L5− (L is histidine, lysine; Im is imidazole) was studied by calorimetry, pH-metry, and NMR spectroscopy. The thermodynamic parameters (logK, ΔrG 0, ΔrH, Δr S) for the reactions of complex formation at 298.15 K and ion strength of 0.5 (KNO3) were determined. The most likely coordination mode for the complexone and amino acid in the mixed complexes was identified.  相似文献   

5.
Type studies on competitive polyatomic anion versus acetonitrile coordination in the self-assembly of a series of [Ag2(X) m (bip)(NCCH3) n ](X)2−m (X = NO3 , CF3SO3 , ClO4 , BF4 , and PF6 ; m = 0, 2; n = 0, 2, 4; bip = 1,4-bis(2-isonicotinoyloxyethyl)piperazine) were carried out. Each bip spacer acts as an N4 tetradentate ligand and is linked to four silver(I) centers through two pyridine and two piperazine moieties, producing a double strand consisting of two 20-membered ring units. The coordinating environment around the silver(I) center is subtly determined by the competition of the polyatomic anions with acetonitrile, that is, by the Ag···NCCH3 versus Ag···X interactions. The coordinating ability of acetonitrile is inversely proportional to the order of the coordination ability of the Hoffmeister series of polyatomic anions, NO3  ≫ CF3SO3  > ClO4  > BF4  ≫ PF6 .  相似文献   

6.
Uranyl–sulphate complexes are the predominant U(VI) species present in acid solutions resulting either from underground uranium ore leaching or from the remediation of leaching sites. Thus, the study of U(VI) speciation in these solutions is of practical significance. The spectra of UO2(NO3)2 + Na2SO4 solutions of different Φ S = [SO42−]/[U(VI)] ratio at pH = 2 were recorded for this purpose. As the presence of uranyl-nitrate complexes should be expected under these experimental conditions, the spectra of UO2(NO3)2 + NaNO3 solutions with different Φ N = [NO3]/[U(VI)] ratio at pH = 2 were also measured. The effects of Φ S and Φ N ratios value were most pronounced in wavelength interval 380–500 nm. Therefore, these parts of experimental overall spectra were used for deconvolution into the spectra of individual species by the method proposed. It enabled to calculate stability constants of anticipated species at zero ionic strength. The Specific Ion Interaction Theory (SIT) was used for this purpose. Stability constants of UO2SO4, UO2(SO4)22−, UO2NO3 + and UO2(NO3)2 coincided well with published data, but those for UO2(SO4)34− and UO2(NO3)3 were significantly lower.  相似文献   

7.
Derivative of 8-hydroxyquinoline i.e. Clioquinol is well known for its antibiotic properties, drug design and coordinating ability towards metal ion such as Copper(II). The structure of mixed ligand complexes has been investigated using spectral, elemental and thermal analysis. In vitro anti microbial activity against four bacterial species were performed i.e. Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Bacillus substilis and found that synthesized complexes (15–37 mm) were found to be significant potent compared to standard drugs (clioquinol i.e. 10–26 mm), parental ligands and metal salts employed for complexation. The kinetic parameters such as order of reaction (n = 0.96–1.49), and the energy of activation (E a = 3.065–142.9 kJ mol−1), have been calculated using Freeman–Carroll method. The range found for the pre-exponential factor (A), the activation entropy (S* = −91.03 to−102.6 JK−1 mol−1), the activation enthalpy (H* = 0.380–135.15 kJ mol−1), and the free energy (G* = 33.52–222.4 kJ mol−1) of activation reveals that the complexes are more stable. Order of stability of complexes were found to be [Cu(A4)(CQ)OH] · 4H2O > [Cu(A3)(CQ)OH] · 5H2O > [Cu(A1)(CQ)OH] · H2O > [Cu(A2)(CQ)OH] · 3H2O  相似文献   

8.
Metallosurfactant complexes of the type trans- [Co(DH)2(HA)X], where DH = Dimethyl glyoxime, HA = Hexadecyl amine and X = Cl, Br, I, N3 , NO2 or SCN, were synthesized and characterized by physico-chemical and spectroscopic methods. In addition, the single crystal X-ray structure of the ionic complex trans-[Co(DH)2(HA)2][Co(DH)2(I)2)] is presented. The critical micelle concentration values of the complexes in ethanol were obtained by measuring the absorption at 290 nm. Specific conductivity data (at 303–313 K) served for the evaluation of the thermodynamics of micellization ) \left( {\Updelta G^{0}_{{{\text{m}}}}, \Updelta H^{0}_{{{\text{m}}}}, \Updelta S^{0}_{\text{m}} } \right) . Steady-state photolysis, cyclic voltammetry and biological activities of the complexes were studied. The compounds were tested for antimicrobial activity.  相似文献   

9.
Hydrazine forms two different types of complexes with divalent metal ions and pyromellitic acid (H4pml) in aqueous medium: (i) hydrazinium complexes of formulae, (N2H5)2M(pml)·xH2O, where x = 3 for M=Ni and x = 4 for M=Co or Zn, and (N2H5)2Mn(H2pml)2, at pH 4.5, (ii) neutral hydrazine complexes with formulae, M2(pml)(N2H4) n ·xH2O where M=Co or Ni when n = 4 and x = 5 or 4 and M=Zn or Cd when n = 2, and x = 4 or 3 at pH 7, and M(H2pml)(N2H4xH2O where x = 4; M=Cu and x = 0; M=Hg, at pH 3, 7.5, respectively. All the complexes are insoluble in water, alcohol and ether. The N–N stretching frequency (990–1,007 cm−1 for coordinated hydrazinium ion and 956–985 cm−1 for bridged neutral hydrazine) indicates the nature of hydrazine present in the complexes. Simultaneously TG-DTA analysis indicates that hydrazinium complexes undergo dehydration and dehydrazination in a single step endothermally in the range of 289–300 °C whereas neutral hydrazine complexes undergo endothermic dehydration (~100 °C) followed by exothermic dehydrazination in the temperature range, 253–332 °C. The anhydrous metal carboxylates further decompose exothermally to leave the respective metal oxides or metal carbonates except zinc, which gives its oxalate as the end product. X-ray powder patterns indicate that even the complexes with the same formulation possess no isomorphism.  相似文献   

10.
The catalytic epoxidation of styrene using urea-hydrogen peroxide and heterotrinuclear Cu(II) complexes with general formula (ML n )2Cu(acac)2, where n = 1–3 and M = VO2+ or Mn2+ is reported. Schiff base complexes ML n involving a 3,4-diaminopyridine bridge with free coordination site were used as the ligand, where (Ln)2− is [(5-x-Sal)2Py]2 and x = H, Br or NO2. The complexes were characterized by physico-chemical and spectroscopic methods. The electrochemical properties of M were modified upon trinuclear complex formation. The trinuclear complexes show high catalytic activity, with up to 86% conversion and 93% selectivity, while no catalytic properties were observed for the monomeric complexes. The catalyst could be reused with some loss of activity.  相似文献   

11.
Abstract  Two new coordination polymers, [CoL(bpp)] n (1) and [MnL(bipy)] n ·0.25nH2L·0.5nH2O (2) (H2L = 1,3-adamantanediacetic acid, bpp = 1,3-bis(4-pyridyl)propane, bipy = 4,4′-bipyridine), were synthesized and characterized by single crystal X-ray diffraction, IR spectroscopy, and thermal analysis. Complex 1 is an one-dimensional (1D) chain structure of Co(II) bridged by L2− as well as bpp. Complex 2 consists of a two-dimensional (2D) (3,6)-connected topology layer structure. Variable temperature magnetic susceptibility measurements in the range of 2–300 K reveal the existence of weak antiferromagnetic interactions in two complexes with J = −1.74 cm−1, g = 2.26 for 1 and J = −0.10 cm−1, g = 1.67 for 2. Index abstract  Two mental-organic frameworks, namely [CoL(bpp)] n (1) and [MnL(bipy)] n ·0.25nH2L·0.5nH2O (2) (H2L = 1,3-adamantanediacetic acid, bpp = 1,3-bis(4-pyridyl)propane, bipy = 4,4′-bipyridine), have been synthesized based on 1,3-adamantanediacetic acid and N-donor coligand with metal ions Co(II) and Mn(II). The magnetic measurement of the two polymers reveals typical antiferromagnetism exchange. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The formation constants of dioxouranium(VI)-2,2′-oxydiacetic acid (diglycolic acid, ODA) and 3,6,9-trioxaundecanedioic acid (diethylenetrioxydiacetic acid, TODA) complexes were determined in NaCl (0.1≤I≤1.0 mol⋅L−1) and KNO3 (I=0.1 mol⋅L−1) aqueous solutions at T=298.15 K by ISE-[H+] glass electrode potentiometry and visible spectrophotometry. Quite different speciation models were obtained for the systems investigated, namely: ML0, MLOH, ML22−, M2L2(OH), and M2L2(OH)22−, for the dioxouranium(VI)–ODA system, and ML0, MLH+, and MLOH for the dioxouranium(VI)–TODA system (M=UO22+ and L = ODA or TODA), respectively. The dependence on ionic strength of the protonation constants of ODA and TODA and of both metal-ligand complexes was investigated using the SIT (Specific Ion Interaction Theory) approach. Formation constants at infinite dilution are [for the generic equilibrium pUO22++q(L2−)+rH+ (UO22+) p (L) q H r (2p−2q+r);β pqr ]: log 10 β 110=6.146, log 10 β 11−1=0.196, log 10 β 120=8.360, log 10 β 22−1=8.966, log 10 β 22−2=3.529, for the dioxouranium(VI)–ODA system and log β 110=3.636, log 10 β 111=6.650, log 10 β 11−1=−1.242 for dioxouranium(VI)–TODA system. The influence of etheric oxygen(s) on the interaction towards the metal ion was discussed, and this effect was quantified by means of a sigmoid Boltzman type equation that allows definition of a quantitative parameter (pL 50) that expresses the sequestering capacity of ODA and TODA towards UO22+; a comparison with other dicarboxylates was made. A visible absorption spectrum for each complex reaching a significant percentage of formation in solution (KNO3 medium) has been calculated to better characterize the compounds found by pH-metric refinement.  相似文献   

13.
Two-dimensional complexes of [Cd(cpoa)(o-pbim)] n (1) and {[Cd3(cpoa)3(o-pbim)2] · 2H2O} n (2) (cpoa2− = 4-carboxyphenoxy acetate, o-pbim = 2-(2-pyridyl)benzimidazole) are synthesized under hydrothermal condition. Single crystal X-ray diffraction analysis shows that complex 1 contains a mono-nuclear unit, whereas complex 2 contains a trinuclear unit. The structural difference of 1 and 2 can be attributed to the various coordination modes of asymmetrically semi-flexible cpoa2− ligand. The luminescent properties of these two compounds are also investigated.  相似文献   

14.
15.
The following chromium(III) complexes with serine (Ser) and aspartic acid (Asp) were obtained and characterized in solution: [Cr(ox)2(Aa)]2− (where Aa = Ser or Asp), [Cr(AspH−1)2] and [Cr(ox)(Ser)2]. In acidic solutions, [Cr(ox)2(Aa)]2− undergoes acid-catalysed aquation to cis-[Cr(ox)2(H2O)2] and the appropriate amino acid. [Cr(ox)(Ser)2] undergoes consecutive acid-catalysed Ser liberation to give [Cr(ox)(H2O)4]+, and the [Cr(Asp)2] ion is converted into [Cr(Asp)(H2O)4]2+. Kinetics of these reactions were studied under isolation conditions. The determined rate expressions for all the reactions are of the form: k obs = a + b[H+]. Reaction mechanisms are proposed, and the meaning of the determined parameters has been established. Evidence for the formation of an intermediate with O-monodentate amino acid is given. The effect of the R-substituent at the α-carbon atom of the amino acid on the complex reactivity is discussed.  相似文献   

16.
Electrospray ionization (ESI) of the Lindqvist (n-Bu4N)2[M6O19] (M = Mo, W) polyoxometalates provides a straightforward entry for the generation of an assortment of oxo- and hydroxo anions in the gas-phase. In particular, the series of oxo dianions of general formula [(MO3) n O]2− (n = 2–6; M = Mo, W), monoanions, namely [(MO3) n O] (n = 1, 2) and [(MO3) n ] (n = 1, 2), and the hydroxo [(MO3) n (OH)] (n = 1–6) species can be readily generated in the gas-phase upon varying the solvent composition as well as the ionisation conditions (typically the Uc cone voltage). Complementary tandem mass experiments (collision induced dissociation and ion–molecule reactions) are also used aimed to investigate the consecutive dissociation of these species and their intrinsic gas-phase reactivity towards methanol. Special emphasis is paid to some of the key factors of these group 6 anions related to the gas-phase activation of methanol, such as molecular composition, open vs closed shell electronic nature and cluster size.  相似文献   

17.
The reactions of 5-R-2-hydroxybenzaldehyde-4-allyl-thiosemicarbazone {R: H (L1); Br (L2)} with [MII(PPh3)nCl2] (M = Ni, n = 2 and M = Ru, n = 3) in a 1:1 molar ratio have given stable solid complexes corresponding to the general formula [Ni(L)(PPh3)] and [Ru(HL)2(PPh3)2]. While the 1:1 nickel complexes are formed from an ONS donor set of the thiosemicarbazone and the P atom of triphenylphosphine in a square planar structure, the 1:2 ruthenium complexes consist of a couple from each of N, S and P donor atoms in a distorted octahedral geometry. These mixed-ligand complexes have been characterized by elemental analysis, IR, UV–Vis, APCI-MS, 1H and 31P NMR spectroscopies. The structures of [Ni(L2)(PPh3)] (II) and [Ru(L1H)2(PPh3)2] (III) were determined by single crystal X-ray diffraction.  相似文献   

18.
The behavior of the phosphine-phosphine sulfide complexes of silver, [Ph2P(S)(CH2) n PPh2] m ·AgNO3 (n=2 or 4;m=1 or 2), in pyridine was studied. Dissolution of the 1:1 complexes in pyridine leads to destruction of their dimeric structures Ag2[Ph2P(S)(CH2) n PPh2]2(NO3)2 (A) to form the complexes Agpy +−P(Ph2)(CH2) n Ph2P=S and Agpy +−S=PPh2(CH2) n PPh2. The solid complexes isolated from pyridine restore dimeric structure A. According to the data of X-ray diffraction analysis, the 1:2 complex isolated from pyridine has the structure [S=P(Ph2)(CH2)2(Ph2)P−(NO3)Ag(Py)−P(Ph2) (CH2)2(Ph2)P=S]Py. According to the data of IR spectroscopy, dissolution of this complex in chloroform leads to the formation of the dimeric structure Ag2Ph2P(S)(CH2)2PPh2]4(NO3)2. Deceased. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1751–1758, September, 1998.  相似文献   

19.
Ba10−x Cs x (PO4)6Cl2, (x = 0, 0.5) chloroapatite ceramics were prepared by sonochemical method of synthesis. The measured room temperature lattice parameters of Ba10 (PO4)6Cl2 and Ba9.5Cs0.5 (PO4)6Cl2−δ are practically the same; that is, a = 10.26 (8), c = 7.65 (7) and a = 10.27 (7), c = 7.65 (5), respectively. Heat capacity measurements were carried out on these materials by differential scanning calorimetry (DSC) in the temperature range 298–800 K. The heat capacity values of Ba9.5Cs0.5(PO4)6Cl2−δ are found to be slightly higher at all temperatures than those of Ba10(PO4)6Cl2. From the heat capacity data, other thermodynamic functions such as enthalpy and entropy increments were computed. The heat capacity values of Ba10(PO4)6Cl2 and Ba9.5Cs0.5(PO4)6Cl2−δ at 298 K are 0.3912 and 0.4310 J K−1 g−1, respectively. Thermal expansion property of the doped and undoped barium chloroapatites was measured by using a home built dilatometer which uses LVDT as displacement sensor. The bulk thermal expansion of Ba10(PO4)Cl2 and Ba9.5Cs0.5(PO4)Cl2−δ is observed to be about 0.9% in the temperature range of 298–973 K.  相似文献   

20.
New divalent transition metal 3,5-pyrazoledicarboxylate hydrates of empirical formula Mpz(COO)2(H2O)2, where M=Mn, Co, Ni, Cu, Zn and Cd (pz(COO)2=3,5-pyrazoledicarboxylate), metal hydrazine complexes of the type Mpz(COO)2N2H4 where M=Co, Zn or Cd and Mpz(COO)2nN2H4·H2O, where n=1 for M=Ni and n=0.5 for M=Cu have been prepared and characterized by physico-chemical methods. Electronic spectroscopic data suggest that Co and Ni complexes adopt an octahedral geometry. The IR spectra confirm the presence of unidentate carboxylate anion (Δν=νasy(COO)–νsym(COO)>215 cm–1) in all the complexes and bidentate bridging hydrazine (νN–N=985–950 cm–1) in the metal hydrazine complexes. Both metal carboxylate and metal hydrazine carboxylate complexes undergo endothermic dehydration and/or dehydrazination followed by exothermic decomposition of organic moiety to give the respective metal oxides as the end products except manganese pyrazoledicarboxylate hydrate, which leaves manganese carbonate. X-ray powder diffraction patterns reveal that the metal carboxylate hydrates are isomorphous as are those of metal hydrazine complexes of cobalt, zinc and cadmium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号