首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选用能量为180 keV,温度为623 K,注入4×1016 cm-2剂量的钴离子束注入TiO2样品.在不同的退火温度下,用高分辨的扫描电镜、同步辐射X射线衍射、卢瑟福背散射/沟道实验和超导量子干涉仪,分别对样品进行结构与磁性的测试. SR-XRD和HRTEM测试结果表明: 在Co注入TiO2后,形成了钴的体心立方(hcp)相和面心立方(fcc)相,且在TiO2中,钴-纳米粒子也已经形成. 随着退  相似文献   

2.

A detailed correlation between microstructure evolution and allotropic phase transformations occurring in Co when subjected to ball milling has been carried out. After short-term milling, the starting mixture of hcp + fcc Co develops into an almost pure hcp phase. However, for longer milling times, plastic deformation introduces large amounts of stacking faults, especially of twin type, in the hcp structure. As a consequence, some of the hcp Co is converted back into fcc and the hcp unit cell is progressively anisotropically distorted. After long-term milling, a steady 'pseudo-equilibrium' state is observed, where all microstructural parameters, including the fcc percentage, tend to level off. However, the milling intensity can still be adjusted to increase further the stacking-fault probability and, consequently, the amount of fcc Co in the milled powders. The results imply that the stacking-fault formation, rather than the local temperature rise or crystallite size reduction associated with the milling process, is the main mechanism governing the hcp-fcc transformation.  相似文献   

3.
The authors present a new approach of internal field 59Co NMR spectra assignment leaving apart from “usual” decomposition on “pure” hcp and fcc stackings, and a set of stacking faults (sfs) sf1–sf5 with a certain lines position. The authors propose including into consideration not only cobalt structural features as well as its magnetic nature due to the strong ferromagnetism in Co metal. The last fact supposes an existence of different magnetic species such as magnetic domains, domain walls, and single-domain particles, thereby helping to spectral lines assignment according to both structural and magnetic origin. The examined sample contains fcc and hcp resonance peaks in both domains and domain walls giving the hcp to fcc ratio equal to 1.9, as well a significant amount of Co sfs, or Co in loose coordination, up to 10 %. The research exhibits a good agreement of all implemented techniques.  相似文献   

4.
Dispersed-well FePt nanoparticles with particle size ~5 nm have been prepared by hydrazine hydrate reduction of H2PtCl6·6H2O and FeCl2·4H2O in ethanol–water system. By employing as-synthesized FePt nanoparticles, the monolayer can be formed by LB Technique. The structural, magnetic properties and electrochemical properties of FePt monolayer were respectively studied by XRD, TEM, VSM and CHI 820 electrochemical workstation. The as-synthesized particle has a chemically disordered fcc structure and can be transformed into chemically ordered fct structure after annealing treatment above 400°C. The coercivity of ordered fct FePt phase can be up to 2515Oe. CVs of 0.5 M H2SO4/0.5M CH3OH on GCE modified with FePt nanoparticles monolayer films illustrate that the as-synthesized FePt is a kind of active electrochemical catalyst.  相似文献   

5.
The lattice parameters of as-prepared and annealed Co nanowires with hcp and fcc structures have been measured using the in situ high-temperature x-ray diffraction method. The hcp and fcc Co nanowires have been fabricated within the porous anodic alumina membranes by a direct-current electrodeposition technique. The results indicate that the variational quantity of the interplanar spacing for hcp Co nanowire arrays is bigger than that for fcc Co nanowire arrays in spite of as-prepared and annealed samples. The structural difference between hcp and fcc Co nanowires results in the different thermal expansion behaviors.  相似文献   

6.
Nickel hydroxides with hierarchical micro-nano structures are prepared by a facile homogeneous precipitation method with different nickel salts (Ni(NO3)2·6H2O, NiCl2·6H2O, and NiSO4·6H2O) as raw materials. The effect of nickel sources on the microstructure and lithium storage performance of the nickel hydroxides is studied. It is found that all the three prepared samples are α-nickel hydroxide. The nickel hydroxides synthesized with Ni(NO3)2·6H2 or NiCl2·6H2O show a similar particle size of 20–30 μm and are composed of very thin nano-sheets, while the nickel hydroxide synthesized with Ni(SO4)2·6H2O shows a larger particle size (30–50 μm) and consists of very thin nano-walls. When applied as anode materials for lithium-ion batteries (LIBs), the nickel hydroxide synthesized with NiSO4·6H2O exhibits the highest discharge capacity, but its cyclic stability is very poor. The nickel hydroxides synthesized with NiCl2·6H2O exhibit higher discharge capacity than the nickel hydroxides synthesized with Ni(NO3)2·6H2O, and both of them show much improved cyclic stability and rate capability as compared to the nickel hydroxide synthesized with Ni(SO4)2·6H2O. Moreover, pseudocapacitive behavior makes a great contribution to the electrochemical energy storage of the three samples. The discrepancies of lithium storage performance of the three samples are analyzed by ex-situ XRD, FT-IR, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) tests.  相似文献   

7.
In the present work, morphological, structural, thermal and magnetic properties of nanocrystalline Co50Ni50 alloy prepared by high energy planetary ball milling have been studied by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. Morphological observations indicated a narrow distribution in the particle and homogeneous shape form with mean average particle size around 130 μm2. The results show that an allotropic Co transformation hcp→fcc occurs within the three first hours of milling and contrary to what expected, the Rietveld refinement method reveals the formation of two fcc solid solutions (SS): fcc Co(Ni) and Ni(Co) beside a small amount of the undissolved Co hcp. Thermal measurement, as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. Magnetic measurement indicated that the 48 h milled powders with a steady state particles size have the highest saturation (105.3 emu/g) and the lowest coercivity (34.5 Oe).  相似文献   

8.
A new strategy, epoxide-assisted precipitation route presented in this work, allows the shape control synthesis of Co3O4 nanoparticles. The shape of the nanoparticles is determined by the nature of the precursor cobalt salts (Co(NO3)2 · 6H2O, CoCl2 · 6H2O) used for the preparation of the particles. The different reaction dynamics of the two salts in ethanolic and aqueous solutions with propylene oxide result in precursor particles with different structures, which lead to the formation of oxide nanoparticles with different shapes during the heat treatment. Spherical particles of about 20 nm are obtained from the ethanolic solution of Co(NO3)2 · 6H2O; cubic-shaped particles of about 30 nm can be prepared from the ethanolic solution of CoCl2 · 6H2O; whereas platelet-like particles of more than 100 nm are synthesized from the aqueous solution of the mixture of Co(NO3)2 · 6H2O and CoCl2 · 6H2O.  相似文献   

9.
From a temperature dependent ESR study of Mn2+-doped crystals of M(BF4)2·6H2O, M Zn, Co and Ni, new structural phase transitions have been detected and studied. First order structural phase transitions occur in Co(BF4)2·6H2O at T1 ~ 281K, T2~189 K and T3~172K (during cooling), in Zn(BF4)2·6H2O at T1 ~ 286 K and in Ni(BF4)2·6H2O at T1 ~ 301 K. A continuous phase transition occurs in Co(BF4)2·6H2O at Tp ~ 257 K, in Zn(BF4)2·6H2O at Tp ~ 277 K and in Ni(BF4)2·6H2O at Tp ~ 294 K. The ESR spectral characteristics suggest similarities in the structures of these fluoroborate compounds in the phase above T1 with the room temperature structure of Mg(ClO4)2·6H2O. All these compounds are found to have a tendency to crystallise in a triply-twinned pseudo-hexagonal form, although the unit cell above T1 is found to be orthorhombic. The structural changes related to the water octahedron around the metal at T1 were found to be very small and basically the same for these three compounds. Although the unit cell structure of Fe(BF4)2·6H2O above the first order phase transition temperature T1 was found to be similar to that of the other fluoroborate compounds, the structural changes occurring at T1 appeared to be quite different. The low temperature thermal behaviour differs considerably in the Co, Fe and Zn compounds.  相似文献   

10.
To demonstrate the potential of nuclear magnetic resonance (NMR) spectroscopy for investigating detailed structural properties in ferromagnetic materials, three different particle sized cobalt (Co) powders have been ball milled for 24 h are accurately characterised by internal-field 59Co NMR. The 59Co NMR spectra show distinct resonance bands corresponding to the different Co sites, face-centred-cubic (fcc), hexagonal-close-packed (hcp) and stacking faults (sfs), in Co metal powders. The hcp+fcc→hcp phase transition encouraged by ball-milling was observed and quantitative values for each Co environment were obtained.  相似文献   

11.
Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.  相似文献   

12.
Abstract

Pure fcc phase of manganese hydride has been synthesized at high temperature from α-Mn and the H2 gas compressed to 1.2 GPa. This fcc phase transforms into the hcp modification at 6 GPa and 298K.  相似文献   

13.
Detailed analysis of the room temperature X-ray powder diffraction data of pure solid C70 is reported. C70 prepared by slow evaporation from toluene solution adopts an hcp structure (space groupP63/mmc) witha=10·53(1) A andc=17·24(1) A. C70 sublimed on to Si wafer adopts an fcc structure witha=14·89(1) A. The occurrence of both the hcp and fcc phases is rationalized in terms of cohesive energy calculations. Theoretical calculations of the diffraction pattern for the hcp structure, taking into account (a) orientational disorder amongst the molecules (b) presence of stacking faults and (c) a fraction of the sample to be amorphous/microcrystalline is seen to provide very good agreement with the experimental diffraction pattern.  相似文献   

14.
The Mössbauer spectroscopy was applied on a random mixture of two kinds of magnetic ions with competing anisotropies, Fe1?xCoxCl2·2H2O. The Mössbauer spectra observed in the Co(Fe)-rich antiferromagnetic (AF) phase near the tetracritical point show that, although the m2(m1) spin component parallel to the easy axis of pure FeCl2·2H2O(CoCl2·2H2O) has no long-range order in this phase (from the neutron diffraction experiment), the m2(m1) spin component contributes to the magnetic hyperfine field at 57Fe nuclei as well as the m1(m2) spin component (which has a long-range order). This fact indicates that the m2(m1) spin components exists in the Co(Fe)-rich AF phase near the tetra-critical point at least in a time scale of ~ 10?8s. This result predicts that the antiferromagnetic ordering in the Co(Fe)-rich AF phase is a new type one. The new phase observed in the intermediate concentration region is demonstrated as the “mixed ordering” phase.  相似文献   

15.
利用扫描隧道显微镜(STM)系统地研究了C60薄膜在GaAs(001)表面的异质外延生长.在GaAs(001)2×4-β相表面,观察到C60薄膜以非密排面进行生长,并在生长中有结构相变产生.实验数据表明,薄膜下层面心立方(fcc)的晶格常数比C60晶体的晶格常数要大13%;而薄膜的表层结构则展示了非理想的六角密堆(hcp)结构,其表面为hcp(1100)面,生长过程是非理想的层状生长模式.在GaAs(001)-c(4×4)衬底上,C60薄膜的表面仍然是fcc(111)面,其结构参数与C60晶体一致,但C60薄膜采用了三维模式进行生长 关键词:  相似文献   

16.
17.
In this paper, WO3·H2O with different nanostructures from 0D to 3D were successfully synthesized via a simple yet cost-effective hydrothermal method with the assistance of surfactants. The structures and morphologies of products were investigated by XRD and SEM. Besides, we systematically explained the evolution process and formation mechanisms of different WO3·H2O morphologies. It is noted that both the kinds and amounts of surfactants strongly affect the formation of WO3·H2O crystals, as reflected in the tailoring of WO3·H2O morphologies. Furthermore, the gas sensing performance of the as-prepared samples towards methanol was also investigated. 3D flower-like hierarchical architecture displayed outstanding response to target gas among the four samples. We hoped our results could be of great benefit to further investigations of synthesizing different dimensional WO3·H2O nanostructures and their gas sensing applications.  相似文献   

18.
Complexing agents are often used to improve the quality of electrodeposited alloys. Influence of different complexing agents with hydroxycarboxylic acid group on the electrodeposited Co-Pt-W thin films has been investigated. Cathodic polarization curves show that the polarization behaviors of electroplating bath with different complexing agents are very different. Surface morphology, phase composition and magnetic properties are observed by means of FESEM, XRD and vibrating sample magnetometer (VSM), respectively. It has been found out that, if citrate was used as complexing agent, the Co-Pt-W thin films were homogeneous and the granular crystals with the average grain size of 2 μm have been observed. Co-Pt-W thin films exhibited hexagonal close packed (hcp) lattice and strong perpendicular anisotropic magnetic behavior (Hc⊥ = 215.5 kA/m; Hc∥ = 55.4 kA/m). In the presence of gluconate, needle-like deposits were obtained and a strong face centered cubic (fcc(1 1 1)) texture was measured. The Co-Pt-W thin films showed isotropic magnetic behavior. In the case of tartate and malate, the coexistence of needle-like deposits and cellular deposits appeared. The XRD patterns showed that the mixed fcc and hcp phase formed. Perpendicular anisotropic magnetic behaviors of thin films, from malate or tartate baths, were not obvious.  相似文献   

19.
The metastable phase of well-faceted, hexagonal, prism-like molybdenum oxide hydrate (MoO3·0.55H2O) was successfully synthesized by evaporating molybdic acid solution prepared through cation membrane electrolysis of Na2MoO4·2H2O aqueous solution. The obtained crystals were characterized by X-ray diffraction (XRD), thermogravimetric (TG), scanning electronic microscopy (SEM) and photoluminescence (PL) spectrophotometry. The as-prepared MoO3·0.55H2O rods were of 2–4 μm in width and 5–12 μm in length. The MoO3·0.55H2O microrods displayed photoluminescence properties at room temperature and were transformed into stable orthorhombic α-MoO3 after air annealing at 380 °C. Moreover, the influence of temperature factor on the phase transformation process, morphology and photoluminescence properties of MoO3·0.55H2O was investigated in detail.  相似文献   

20.
The crystallographic structure and morphology of electrodeposited cobalt films on Au(111) is found to be very sensitive on the electrolyte pH value and on the overpotential applied during deposition. The samples, 2 to 500 nm thick, where characterized by nuclear magnetic resonance (NMR), atomic force microscopy (AFM) and electron diffraction. The latter technique shows that the Co films grow in registry with the gold underlayer, reproducing the Au(111) texture. During the first stage of growth and depending on overpotential and pH value, either continuous hcp Co films or hcp Co islands are formed. Only the latter growth mode leads to an out of plane magnetization with 100% of remanence. Increasing the thickness, fcc Co becomes the prevailing phase. Eventually the fcc to hcp ratio saturates at the same value regardless the overpotential. The thickness for which the equilibrium fcc to hcp ratio is obtained as well as the sample structure and morphology before saturation, depend strongly on the overpotential value. In any case, the predominance of the fcc Co phase leads to an in plane magnetization of the thick samples. This study opens up new opportunities of engineering the properties of electrodeposited cobalt films. Received 29 February 2000 and Received in final form 3 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号