首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electric field enhancement properties of an active gold nanoshell with gain material inside have been investigated by using Mie theory. As the gain coefficient of the inner core increases to a critical value, a super-resonance appears in the active gold nanoshell, and enormous enhancements of the electric fields can be found near the surface of the particle. With increasing shell thickness, the critical value of the gain coefficient for the super-resonance of the active gold nanoshell first decreases and then increases, and the corresponding surface enhanced Raman scattering (SERS) enhancement factor (G factor) also first increases and then decreases. The optimized active gold nanoshell can be obtained with an extremely high SERS G factor of the order of 1019-1020. Such an optimized active gold nanoshell possesses a high-efficiency SERS effect and may be useful for single-molecule detection.  相似文献   

2.
丛超  吴大建  刘晓峻 《物理学报》2012,61(4):47802-047802
本文基于时域有限差分方法(finite difference time domain, FDTD)研究了入射光波长、入射光偏振方向、纳米管几何形状、 管壁厚度及内核和包埋介质的变化对椭圆截面金纳米管近场分布特征的影响. 研究发现, 入射光波长为纳米管等离激元共振波长时, 纳米管近场增强最大; 入射光偏振方向与椭圆长轴夹角的增加会导致管内的场强迅速增大; 椭圆管半短轴变大可以调节纳米管场强分布从两端高、中间低变化为均匀分布; 内核和包埋介质介电常数的增大均会使得纳米管内部及周围场强逐渐减弱.  相似文献   

3.
We propose a cascaded plasmonic nanorod antenna for large broadband electric near-field enhancement. The structure has one big gold nanorod on each side of a small two-wire antenna which consists of two small gold nanorods. For each small nanorod, the enhanced and broadened optical response can be obtained due to the efficient energy transfer from its adjacent big nanorod through strong plasmonic near-field coupling. Thus, the electric field intensity of the cascaded antenna is significantly larger and broader than that of the individual small two-wire antenna. The resonant position, field intensity enhancement, and spectral width of the cascaded antenna are highly tunable by varying the geometry of the system. The quantum efficiency of the cascaded antenna is also greatly enhanced compared with that of the small antenna. Our results are important for the applications in field-enhanced spectroscopy.  相似文献   

4.
We demonstrate a scheme where a laser beam which is very far detuned from an atomic resonance experiences a large index of refraction with vanishing absorption. The essential idea is to excite two Raman resonances with appropriately chosen strong control lasers.  相似文献   

5.
The local electric field components in the dielectric wall with a long gold nanowire in its core are calculated based on quasi-static theory. The calculated results show that the complete polarized incident light does not only stimulate same directional complete polarized local electric field. The same directional polarized electric field only locates close to the poles of the core wire and is parallel or perpendicular to the polarized direction of the incident radiation. On the other hand, incident light also stimulates perpendicular directional polarization, which densely locates close to the poles of the core wire in the direction with an included angle π/4 or 3π/4 makes with polarization direction of incident light. Furthermore, local electric field components in the wall also depend on the dielectric constant of dielectric wall and surrounding medium. When dielectric constant of the wall is less than that of surrounding, the areas of perpendicular directional polarized local field in the wall reduce and shift greatly. At the same time, more parallel directional polarized local field focus in the poles of the wall along the incident polarization. PACS 78.67.Bf; 73.20.Mf; 36.40.Gk; 78.66.Bz; 73.20.Mf  相似文献   

6.
Ye-Wan Ma 《中国物理 B》2021,30(11):114207-114207
The effects of inner nanowire radius, shell thickness, the dielectric functions of middle layer and surrounding medium on localized surface plasmon resonance (LSPR) of gold-dielectric-silver nanotube are studied based on the quasi-static approximation. Theoretical calculation results show that LSPR of gold-dielectric-silver nanotube and LSPR numbers can be well optimized by adjusting its geometrical parameters. The longer wavelength of $\left|\omega_{-}^{-}\right\rangle$ mode takes place a distinct red-shift with increasing the inner nanowire radius and the thickness of middle dielectric layer, while a blue-shift with increasing outer nanotube thickness. The physical mechanisms are explained based on the plasmon hybridization theory, induced charges and phase retardation. In addition, the effects of middle dielectric function and surrounding medium on LSPR, and the local electric field factor are also reported. Our study provides the potential applications of gold-dielectric-silver nanotube in biological tissues, sensor and related regions.  相似文献   

7.
In this contribution, novel luminescent gold nanoclusters were synthesized by utilizing bovine serum albumin as templates with a simple, rapid, and one-pot procedure. The as-prepared gold nanoclusters were highly dispersed in aqueous solution and emitted an intense red fluorescence under UV light (365?nm). They exhibited strong fluorescence and the maximum excitation and emission wavelengths were 480 and 613.5?nm. In addition, the bovine serum albumin-stabilized gold nanoclusters were successfully utilized as novel fluorescent probes for the detection of quercetin for the first time. It was found that the addition of quercetin induced the strong fluorescence intensity of the gold nanoclusters to decrease. The decrease in fluorescence intensity of the gold nanoclusters caused by quercetin allowed the sensitive detection of quercetin in the range of 8.9?×?10?8?C1.8?×?10?4?mol?L?1. The detection limit for quercetin is 1.8?×?10?8?mol?L?1 at a signal-to-noise ratio of 3. The present sensor for quercetin detection possessed a low detection limit and wide linear range. In addition, the real samples were analyzed with satisfactory results.  相似文献   

8.
We report a proof-of-principle experiment where the refractive index of an atomic vapor is enhanced while maintaining vanishing absorption of the beam. The key idea is to drive alkali atoms in a vapor with appropriate control lasers and induce a gain resonance and an absorption resonance for a probe beam in a two-photon Raman configuration. The strength and the position of these two resonances can be manipulated by changing the parameters of the control lasers. By using the interference between these two resonances, we obtain an enhanced refractive index without an increase in the absorption.  相似文献   

9.
Ionic liquids have received wide attention due to their novel optoelectronic structures and devices as an optical means of regulating electricity.However,the quantitative testing and analysis of refractive index of ionic liquids under electric field are rarely carried out.In the present study,an experimental apparatus including a hollow prism is designed to measure the refractive indices of ionic liquids under different electric fields.Five groups of imidazole ionic liquids are experimentally investigated and an inversion is performed to determine the refractive indices under electric fields.The error propagation analysis of the apex angle and the minimum deflection angle are conducted,and the machining accuracy requirements of the hollow prism are determined.The results show that the refractive indices of imidazole ionic liquids change with the light wavelength,following a downward convex parabola.Furthermore,the refractive index decreases with the carbon chain length of ionic liquid at a given wavelength,presenting an order of C3MImI>C4MImI>C5MImI>C3MImBr>C3MImBF4.Notably,the refractive index of imidazole ionic liquid exhibits a nonlinear change with the applied voltage at 546 nm and a monotonical decrease at 1529 nm.Besides,the variation of refractive index at 1529 nm with the applied voltage is larger than that at 546 nm and 1013 nm.Importantly,the variation of refractive index is contrary to that of absorption coefficient under electric field.This study illustrates that the theory of electrode and carrier transport can be used to explain the law of variation of n–k value of ionic liquid under the electric field,and provides the support for the evaluation of physical properties of ionic liquids,the measurement of optical functional parameters and the regulation of electric–optic performances of optical devices.  相似文献   

10.
11.
金属纳米颗粒的等离激元共振引起的局域场增强效应,对显微成像、光谱学、半导体器件、非线性光学等诸多领域都具有极大的应用潜力。尤其是在光学纳米材料领域,通过亚波长金属纳米颗粒与电介质的组合引起局域场增强效应,提高了纳米材料的光学性能,并促进纳米材料在光学领域的应用。本文主要综述几种常见纳米结构所产生的局域场增强效应及其应用,详细介绍并总结了金属纳米材料的不同结构参数与局域场增强的关系及局域场增强在非线性光学、光谱学、半导体器件等领域的应用。未来,随着对金属纳米材料的研究愈发深入,局域场增强的应用将更加广泛,这将对诸多领域的发展产生重要影响。  相似文献   

12.
13.
We applied quantum theory for nonlocal response and plasmon-assisted field enhancement near a small metallic nanoscale antenna in the limit of weak incoming fields. A simple asymmetric bio-inspired design of the nanoantenna for polarization-resolved measurement is proposed. The spatial field intensity distribution was calculated for different field frequencies and polarizations. We have shown that the proposed design the antenna allows us to resolve the polarization of incoming photons.  相似文献   

14.
An expression for the refractive index of a gas of two-level atoms in the quantized single-mode field of counterpropagating waves is calculated. It is shown that in the limit of large numbers of photons the result reproduces the quasiclassical result in only the case of standing wave where intensities of both waves are equal. Explanation of this “strange” situation where the abilities of quantum field theory turn to be more restricted than those of classical theory is given.  相似文献   

15.
16.
The effect of an electric field on the basic parameters of confined and interfacepolarons in cylindrical nanowires embedded in a non-polar matrix are studied theoreticallyfor the first time. By using the Lee, Low, and Pines variational method, the analyticalexpressions for the quasi-one-dimensional Fröhlich polaron self-energy and effective massare obtained as functions of the wire radius and the strength of the electric fieldapplied perpendicular to the wire axis. We have shown that the polaron self-energy as wellas effective mass strongly depents on both the strengths of the electric field and on thewire radius. This will be taken into account in the interpretation of optical phenomenarelated to polaron motion in cylindrical nanowire, when the effect of an applied electricfield competes with the spatial quantum confinement.  相似文献   

17.
The field near a sharp metal tip can be strongly enhanced if irradiated with an optical field polarized along the tip axis. We demonstrate that the enhanced field gives rise to local second-harmonic (SH) generation at the tip surface thereby creating a highly confined photon source. A theoretical model for the excitation and emission of SH radiation at the tip is developed and it is found that this source can be represented by a single on-axis oscillating dipole. The model is experimentally verified by imaging the spatial field distribution of strongly focused laser modes.  相似文献   

18.
19.
Electric field noise from fluctuating patch potentials is a significant problem for a broad range of precision experiments, including trapped ion quantum computation and single spin detection. Recent results demonstrated strong suppression of this noise by cryogenic cooling, suggesting an underlying thermal process. We present measurements characterizing the temperature and frequency dependence of the noise from 7 to 100 K, using a single Sr+ ion trapped 75 mum above the surface of a gold plated surface electrode ion trap. The noise amplitude is observed to have an approximate 1/f spectrum around 1 MHz, and grows rapidly with temperature as T;{beta} for beta from 2 to 4. The data are consistent with microfabricated cantilever measurements of noncontact friction but do not extrapolate to the dc measurements with neutral atoms or contact potential probes.  相似文献   

20.
In this work we describe an ultraviolet subwavelength focusing in plasmonic nanostructures. A system which provides a 20–25 times local field enhancement at a wavelength of 350 nm is proposed. This system represents a metalized V-shaped groove in a surface of a dielectric medium. Subwavelength focusing is achieved by a plasmon wave propagation along the surface of metal film and by the transfer of electromagnetic field through the dielectric medium. The influence of system parameters on a local field enhancement is investigated. A simplified model that allows for determining the geometric parameters of an optimized resonator is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号