首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The structural transition of the l- and dl forms of poly(N-(1- hydroxymethyl)propylmethacrylamide (PHMPMA) in aqueous solution was studied by measuring the pressure dependence of the apparent scattering intensity, differential scanning calorimetry (DSC), and circular dichroism (CD). The thermodynamic implications of the results are discussed in relation to the chiral structure of the side chain, and differences in the thermal and barometric transitions. T-P diagrams of the transition showed characteristic ellipsoid features. Antagonism of the temperature and pressure effects was observed only for P(dl-HMPMA). For P(l-HMPMA), the transition temperature (T tr) decreased with increasing pressure, and the highest T tr was observed at atmospheric pressure (0.1 MPa). For both polymers, the highest P trs were observed at the lowest temperatures. The l polymer showed a specific negative peak in its CD spectrum at around 220 nm in the lower temperature region and the temperature dependence was reproduced by a single-step transition, with the midpoint corresponding to the T tr obtained from the scattering measurements. Coupled with the results from the DSC, the different behavior between the P(l-HMPMA) and P(dl-HMPMA) could be explained in terms of the chain states before and after the transition. The cooperative factors derived from the DSC measurement revealed that about 4 to 5 polymers of the present size were necessary to perform a thermal transition for P(l-HMPMA), and that P(dl-HMPMA) underwent its transition as an almost single molecular event.This revised version was published online in June 2005 with correction to the article category.  相似文献   

2.
Corncob is an economic feedstock and more than 20 million tons of corncobs are produced annually in China. Abundant xylose can be potentially converted from the large amount of hemicellulosic materials in corncobs, which makes the crop residue an attractive alternative substrate for a value-added production of a variety of bioproducts. Lactic acid can be used as a precursor for poly-lactic acid production. Although current industrial lactic acid is produced by lactic acid bacteria using enriched medium, production by Rhizopus oryzae is preferred due to its exclusive formation of the l-isomer and a simple nutrition requirement by the fungus. Production of l-(+)-lactic acid by R. oryzae using xylose has been reported; however, its yield and conversion rate are poor compared with that of using glucose. In this study, we report an adapted R. oryzae strain HZS6 that significantly improved efficiency of substrate utilization and enhanced production of l-(+)-lactic acid from corncob hydrolysate. It increased l-(+)-lactic acid final concentration, yield, and volumetric productivity more than twofold compared with its parental strain. The optimized growth and fermentation conditions for Strain HZS6 were defined.  相似文献   

3.
Samples of poly(l,l-lactide)-block-poly(ethylene glycol)-block-poly(l,l-lactide) (PLLA-PEG-PLLA) were synthesized from l,l-lactide polymerization using stannous 2-ethylhexanoate, Sn(Oct)2 as initiator and di-hydroxy-terminated poly(ethylene glycol) (PEG) (M n  = 4000 g mol−1) as co-initiator. The chemical linkage between the PEG segment and the PLA segments was characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetry analysis (TG) revealed the copolymers composition and was capable to show the deleterious effect of an excess of Sn(Oct)2 in the polymer thermal stability, while Differential Scanning Calorimetry (DSC) allowed the observation of the miscibility between the PLLA and PEG segments in the different copolymers.  相似文献   

4.
d-Lactic and l-lactic acids were simultaneously determined by means of a column-switching high-performance liquid chromatography (HPLC) with fluorescence detection. As a fluorescence reagent, 4-nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ) was employed for the fluorescence derivatization of lactic acid. The proposed HPLC system adopted both octylsilica (Cadenza CD-C8) and amylose-based chiral columns (CHIRALPAK AD-RH), which proved to give a sufficient enantiomeric separation of the lactic acid derivatives with a separation factor () of 1.32 and a resolution (Rs) of 1.98. Moreover, the features of the first elution of d-lactic acid peak in the proposed HPLC were convenient for the determination of trace amount of serum d-lactic acid, which is known to increase under diabetes. Intra-day and inter-day accuracies were in the range of 90.5–101.2 and 89.0–100.7%, and the intra-day and inter-day precisions were 0.3–1.2 and 0.4–4.8%, respectively. The proposed method was applied to determine d-lactic and l-lactic acids in human serum of normal subjects and diabetic patients, showing that both d-lactic and l-lactic acid concentrations were significantly increased in the serum of diabetic patients (n=31) as compared with normal subjects (n=21). This fact was found for the first time owing to the development of the proposed HPLC method which is able to determine d-lactic and l-lactic acid simultaneously. Finally, serum d-lactic acid concentrations determined by the proposed HPLC method were compared with those from a reported enzymatic assay, and the smaller p value between normal subjects and diabetic patients was shown by the proposed HPLC method.  相似文献   

5.
It is known that the electrical volume resistivity of insulating polymers filled with conductive fillers suddenly decreases at a certain content of filler. This phenomenon is called percolation. Therefore, it is known that controlling resistivity in the semi-conductive region for carbon black (CB) filled composites is very difficult. When poly (ethylene-co-vinyl acetate) (EVA) is used as a matrix, the percolation curve becomes gradual because CB particles disperse well in EVA. In this study, the relationship between the dispersion state of CB particles and electrical resistivity for EVA/poly (L-lactic acid) (PLLA) filled with CB composite was investigated. The apparent phase separation was seen in the SEM photograph. It was predicted that the CB particles located into the EVA phase in the light of thermodynamical consideration, which was estimated from the wetting coefficient between polymer matrix and CB particles. The total surface area per unit mass of dispersed CB particles in the polymer blend matrix was estimated from small-angle X-ray scattering and the volume resistivity decreased with increasing CB content. The values of the surface area of CB particles in CB filled EVA/PLLA (25/75 wt%) and EVA/PLLA (50/50 wt%) polymer blends showed a value similar to that of the CB filled EVA single polymer matrix. In electrical volume resistivity measurement, moreover, the slopes of percolation curves of EVA/PLLA (25/75 wt%) and EVA/PLLA (50/50 wt%) filled with CB composite are similar to that of EVA single polymer filled with CB composite. As a result, it was found that CB particles selectively locate in the EVA phase, and then the particle forms conductive networks similar to the networks in the case of EVA single polymer used as a matrix.  相似文献   

6.
Only a single type of circular circumferential crack is conventionally reported for poly(l-lactic acid) (PLLA). In this study, PLLA samples were found to exhibit as many as four crack types of different directions and patterns, which cannot be feasibly explained simply by the directional difference in coefficients of thermal expansion. Depending on crystallization temperature (T c), PLLA crystallizes into ringless or ring-banded spherulites, whereas the crack patterns are dramatically different in these two types of spherulites. In ring-banded spherulites of PLLA crystallized at intermediate T c, two uniquely different crack types are present: (1) twin circumferential cracks coinciding with the dark–bright and bright–dark boundary and (2) radial short-segmental voids coinciding on the bright bands in spherulites. The radial short-segmental cracks on the bright band of ring-banded spherulites may be caused by PLLA crystals of radial direction with various twisting that contract laterally upon cooling. Only circumferential cracks are present in PLLA crystallized into ringless spherulites, where concentric continuous circumferential cracks are present in the ringless spherulites at low T c with finer lamellae, but discontinuous and irregular circumferential cracks are present in the ringless spherulites at high T c with coarse lamellae. Although all cracks are triggered by cooling from T c, all evidences indicate that the crack patterns and types are highly associated with the lamellar orientation, patterns, and coarseness in spherulites.  相似文献   

7.

Abstract  

Thermal behavior, miscibility, and crystalline morphology in blends of low-molecular-weight poly(l-lactic acid) (LMw-PLLA) or high-molecular-weight PLLA (HMw-PLLA) with various polyesters such as poly(butylene adipate) (PBA), poly(ethylene adipate) (PEA), poly(trimethylene adipate) (PTA), or poly(ethylene succinate) (PESu), respectively, were explored using differential scanning calorimeter (DSC), and polarized-light optical microscopy (POM). Phase behavior in blends of PLLA with other polyesters has been intriguing and not straight forward. Using a low- and high molecular weight PLLA, this study aimed at mainly using thermal analyses for probing the phase behavior, phase diagrams, and temperature dependence of blends systems composed of PLLA of two different molecular weights (low and high) with a series of aliphatic polyesters of different structures varying in the (CH2/CO) ratio in main chains. The blends of LMw-PLLA/PEA and LMw-PLLA/PTA show miscibility in melt and amorphous glassy states. Meanwhile, the LMw-PLLA/PESu blend is immiscible with an asymmetry-shaped upper critical solution temperature (UCST) at 220–240 °C depending on the blend composition. In contrast to miscibility in LMw-PLLA/PTA and LMw-PLLA/PEA blends, HMw-PLLA with polyesters are mostly immiscible; and HMw-PLLA/PTA blend is the only one showing an asymmetry-shaped UCST phase diagram with clarity points at 195–235 °C (depending on composition). Reversibility of UCST behavior, with no chemical transreactions, in these blends was proven by solvent recasting, gel permeation chromatography, and Fourier transform infrared spectroscopy (FT-IR). Crystalline morphology behavior of the LMw-PLLA/PEA and LMw-PLLA/PTA blends furnishes addition evidence for miscibility in the amorphous phase between LMw-PLLA and PTA or PEA.  相似文献   

8.
Summary The thermal behavior of poly(L-lactic acid) (PLLA) was studied with differential scanning calorimetry (DSC) and polarized optical microscopy. For amorphous PLLA samples, double cold crystallisation peaks were observed in the DSC traces during heating process, being strongly dependent on heating rates. The observation was discussed based on the assumption that the quenched PLLA sample presented some remaining metastable or a precrystalline phase. A small exothermal peak was observed before the main melting peak at low heating rates. The probable reason was discussed through melt-recrystallisation mechanism. Influence of thermal history on the cold crystallisation and melting behavior was also performed on heating process for PLLA samples.  相似文献   

9.
The polymerization of o-phenylenediamine (OPD) on l-tyrosine (Tyr) functionalized glassy carbon electrode (GCE) and its electro-catalytic oxidation towards ascorbic acid (AA) had been studied in this report. l-Tyrosine was first covalently grafted on GCE surface via electrochemical oxidation, which was followed by the electrochemical polymerization of OPD on the l-tyrosine functionalized GCE. Then, the poly(o-phenylenediamine)/l-tyrosine composite film modified GCE (POPD-Tyr/GCE) was obtained. X-ray photo-electron spectroscopy (XPS), field emission scanning electron microscope (SEM), and electrochemical techniques have been used to characterize the grafting of l-tyrosine and the polymerization and morphology of OPD film on GCE surface. Due to the doping of the carboxylic functionalities in l-tyrosine molecules, the POPD film showed good redox activity in neutral medium, and thus, the POPD-Tyr/GCE exhibited excellent electrocatalytic response to AA in 0.1 mol l−1 phosphate buffer solution (PBS, pH 6.8). The anode peak potential of AA shifted from 0.58 V at GCE to 0.35 V at POPD-Tyr/GCE with a greatly enhanced current response. A linear calibration graph was obtained over the AA concentration range of 2.5 × 10−4–1.5 × 10–3 mol l−1 with a correlation coefficient of 0.9998. The detection limit (3δ) for AA was 9.2 × 10−5 mol l−1. The modified electrode showed good stability and reproducibility and had been used for the determination of AA content in vitamin C tablet with satisfactory results.  相似文献   

10.
Glycerol has become an ideal feedstock for producing fuels and chemicals. Here, five technological schemes for optically pure d-lactic acid production from raw glycerol were designed, simulated, and economically assessed based on five fermentative scenarios using engineered Escherichia coli strains. Fermentative scenarios considered different qualities of glycerol (pure, 98 wt.%, and crude, 85 wt.%) with concentrations ranging from 20 to 60 g/l in the fermentation media, and two fermentation stages were also analyzed. Raw glycerol (60 wt.%) was considered as the feedstock feeding the production process in all cases; then a purification process of raw glycerol up to the required quality was required. Simulation processes were carried out using Aspen Plus, while economic assessments were performed using Aspen Icarus Process Evaluator. D-Lactic acid recovery and purification processes were based on reactive extraction with tri-n-octylamine using dichloromethane as active extractant agent. The use of raw glycerol represents only between 2.4% and 7.8% of the total production costs. Also, the total production costs obtained of D-lactic acid in all cases were lower than its sale price indicating that these processes are potentially profitable. Thus, the best configuration process requires the use of crude glycerol diluted at 40 g/l with total glycerol consumption and with D-lactic acid recovering by reactive extraction. The lowest obtained total production cost was 1.015 US$/kg with a sale price/production cost ratio of 1.53.  相似文献   

11.
The micelle formation of a series of amphiphilic block copolymers in aqueous and NaCl solutions was studied by a fluorescent probe technique using pyrene as a "model drug". These copolymers were synthesized from poly (ethylene glycol) (PEG) and l-lactide by a new calcium ammoniate catalyst. They had fixed PEG block lengths (44, 104 or 113 ethylene oxide units) and various poly(l-lactide) (PLLA) block lengths (15–280 lactide units). The critical micelle concentration (cmc) was found to decrease with increasing PLLA content. The distinct dissimilarity of the cmc values of diblock and triblock copolymers based on the same block length of PEG provided evidence for the different configurations of their micelles. It was also observed that the introduction of NaCl salt significantly contributed to a decrease in the cmcs of the copolymers with short PEG and PLLA blocks, while it had less influence on the cmcs of copolymers with long PEG or PLLA blocks. The dependence of partition coefficients ranging from 0.2×105 to 1.9×105 on the PLLA content in the copolymer and on the micelle configuration was also discussed. The contribution of NaCl salt to increasing the partition of pyrene into a micellar phase was observed.  相似文献   

12.
A detailed dielectric characterization of the relaxation modes found in a poly(L-lactic acid), PLLA, film containing 0.4 mass% of water is provided. The sub-glass relaxation process is a superposition of two processes, one highly influenced by water with activation energy of 50 kJ mol–1, and another one, with longer relaxation times and lower intensity having activation energy of 38 kJ mol–1. Dried PLLA exhibits an abnormally broad secondary β-relaxation that probably corresponds to the superposition of multiple processes. Upon water sorption the strength of the more mobile process significantly increases being shifted to lower temperatures which allows the detection of the underlying process. The glass transition relaxation process is deviated to higher frequencies almost one decade due to the water plasticizing effect. The reported results show that small quantities of water may have a profound impact in the relaxational features in PLLA, which should be taken in account when considering the properties and performance of this system.  相似文献   

13.
Cold crystallization and melting of poly(l-lactide) (PLLA) blended with an uncured or with an amino-cured epoxy resin (diglycidyl ether of bisphenol-A [DGEBA]) were investigated. It was found that the uncured PLLA/DGEBA blends were miscible, as they exhibited a single composition-dependent glass transition temperature (T g). Melting point depression measurements indicated the existence of some type of interaction between the blend components, which was confirmed by Fourier transform infrared spectroscopy. Depending on the crystallization conditions and on the blend composition, a mixture of α and α′ crystals have been detected in PLLA and in uncured DGEBA/PLLA blends when crystallized from the glassy state. At high DGEBA contents, preferably imperfect α crystals are formed. On the contrary, at low DGEBA contents, the α′ form predominates and an exotherm associated to the α′–α transformation appears on the differential scanning calorimetry (DSC) scan before the main melting peak. Upon curing, the system transforms from a homogeneous mixture with a single refractive index into an opaque multiphasic one, as revealed by the existence of two T gs in the DSC scans. These cross-linked immiscible blends displayed a single crystallization exotherm which scarcely changed with composition, and PLLA cold crystallized mainly into the α′ form from an almost pure PLLA phase; subsequently, the α′ crystals transform into the α form just before melting during the DSC scan.  相似文献   

14.
Although poly(lactic acid) is known as a biodegradable polymer, its hydrolytic degradation is extremely slow, taking years in water and in the human body. In this study the effects of blending oligomeric poly(aspartic acid-co-lactide) (PALs) on the hydrolytic degradation of poly(l-lactic acid) (PLLA) were studied in detail. It was found that the addition of PAL did not accelerate the hydrolysis of the PLLA in air (25 °C, 60% relative humidity), but significantly accelerated it in a phosphate buffer solution. The degradation rate becomes higher for the blends containing PAL with higher molar ratios of lactide to aspartic acid units, [LA]/[Asp], when PLLA/PAL blends prepared with different PALs are compared at the same PAL concentration. TEM results, in which the distribution of PALs with higher [LA]/[Asp] occurs at a smaller scale in blends, imply that higher miscibility of the PAL with PLLA results in higher contact area between the components, thereby accelerating the degradation efficiently.  相似文献   

15.
In this study, the fed-batch fermentation technique was applied to improve the yield of l-threonine produced by Escherichia coli TRFC. Various fermentation substrates and conditions were investigated to identify the optimal carbon source, its concentration and C/N ratio in the production of l-threonine. Sucrose was found to be the optimal initial carbon source and its optimal concentration was determined to be 70 g/L based on the results of fermentations conducted in a 5-L jar fermentor using a series of fed-batch cultures of E. coli TRFC. The effects of glucose concentration and three different feeding methods on the production of l-threonine were also investigated in this work. Our results showed that the production of l-threonine by E. coli was enhanced when glucose concentration varied between 5 and 20 g/L with DO-control pulse fed-batch method. Furthermore, the C/N ratio was a more predominant factor than nitrogen concentration for l-threonine overproduction and the optimal ratio of ammonium sulfate to sucrose (g/g) was 30. Under the optimal conditions, a final l-threonine concentration of 118 g/L was achieved after 38 h with the productivity of 3.1 g/L/h (46% conversion ratio from glucose to threonine).  相似文献   

16.
l-Lysine (l-Lys) in living bodies is critical for metabolism; therefore, determination of its levels in food is important. Most enzymatic methods for l-Lys analysis are performed using l-lysine oxidase (LyOx), but commercially manufactured LyOx is generally not highly selective for l-Lys among amino acids. We previously isolated LyOx as an antibacterial protein secreted from the skin of the rockfish Sebastes schlegeli. In the present study, we developed an optical enzyme sensor system for rapid and continuous determination of l-Lys using this LyOx. The system comprised an immobilized LyOx membrane, an optical oxygen probe, a flow system, and a personal computer. The amount of l-Lys was detected as a decrease in the oxygen concentration due to the LyOx reaction. The specificity of the sensor was examined against various amino acids. The sensor response was specific for l-Lys. Good reproducibility was obtained in 58 assays. The response of the sensor using commercially prepared LyOx was unstable compared with the response using LyOx isolated in our laboratory. Our sensor system could be used for 5 weeks without our having to change the enzyme membrane. The calibration curve for a standard l-Lys solution was linear from 0.1 to 3.0 mmol L−1. One assay could be completed within 2 min. The sensor was applied to determine the l-Lys content in food samples such as bonito cooking water and scallop hepatopancreas. The values obtained using the sensor and conventional high-performance liquid chromatography methods were well correlated.  相似文献   

17.
A poly(l-lactide) diol was obtained through ring opening polymerization of l-lactide, using 1,6 hexanediol and tin(II) 2 ethylhexanoate as a catalyst. In the second step, the poly(l-lactide) macromer (mLA) was obtained by the reaction of poly(l-lactide) diol with methacrylic anhydride. The effective incorporation of the polymerizable end groups was assessed by Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR). Besides, poly(l-lactide) networks (pmLA) were prepared by photopolymerization of mLA. Further, the macromer was copolymerized with 2-hydroxyethyl acrylate seeking to tailor the hydrophilicity of the system. A set of hydrophilic copolymer networks were obtained. The phase microstructure of the new system and the network architecture was investigated by differential scanning calorimetry, infrared spectroscopy, dynamic mechanical spectroscopy, thermogravimetry, and water sorption studies.  相似文献   

18.
Rhizopus oryzae is becoming more important due to its ability to produce an optically pure l-lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4′-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways.  相似文献   

19.
l-Asparaginase (ASNase) has proved its use in medical and food industries. Sequence-based screening showed the thermophilic Streptomyces strain Streptomyces thermoluteus subsp. fuscus NBRC 14270 (14270 ASNase) to positive against predicted ASNase primary sequences. The 14270 ASNase gene and four l-asparaginase genes from Streptomyces coelicolor, Streptomyces avermitilis, and Streptomyces griseus (SGR ASNase) were expressed in Streptomyces lividans using a hyperexpression vector: pTONA5a. Among those genes, only 14270 ASNase and SGR ASNase were successful for overexpression and detected in culture supernatants without an artificial signal peptide. Comparison of the two Streptomyces enzymes described above demonstrated that 14270 ASNase was superior to SGR ASNase in terms of optimum temperature, thermal stability, and pH stability.  相似文献   

20.
Phase transitions of poly(N-isopropylacrylamide-co-acrylic acid) (PiPA-AA) and poly(N,N- diethylacrylamide-co-acrylic acid) (PdEA-AA) in water have been investigated by means of turbidimetry, Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The phase transition temperatures (Tp) of these copolymers increase with the degree of ionization () of the acrylic acid (AA) units, which in turn is dependent on the pH of the solutions. Apparent values of pKa for the AA units, determined from the pH dependencies of Tp, are 4.7 and 5.4 for PiPA-AA and PdEA-AA, respectively. Differences between Tp for PiPA-AA and Tp for PiPA homopolymer (Tp) are +1.5 and –0.2 °C/mol% of AA at =1 and 0, respectively. The values of Tp for PdEA-AA are +2.6 (ionic) and –0.5 (nonionic)°C/mol%, indicating that the incorporated AA units have a larger effect on PdEA than on PiPA. DSC measurements performed with each of these copolymers at different pH values show a linear relationship between Tp and the enthalpy of transition (H). IR measurements of PiPA-AA show that the profiles of IR bands from both iPA and AA units exhibit critical changes at Tp of the copolymer. Heating the solution above Tp leads to shifts of the amide II, C–H stretch, and C–H bend bands from the iPA units toward lower wavenumbers, as well as a shift of the amide I band from the iPA units toward higher wavenumbers. A decrease in the intensity of the symmetric C=O stretch IR band from carboxylate anions (1560 cm–1), and an increase in the intensity of the C=O stretch band from COOH groups (1705 cm–1) suggest that a partial protonation of the carboxylate groups (COO+H+COOH) takes place upon the phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号