首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In its molten phase, 1,1'-binaphthyl is racemic due to its high racemization rate, but it can crystallize as a conglomerate of R and S crystals. Our experiments have indicated that, under some conditions, the crystal growth front of 1,1'-binaphthyl shows many of the characteristics of an open system in which chiral symmetry is broken; i.e., the growing solid phase becomes predominantly R or S. Here we present a kinetic model to explain the observed chiral symmetry breaking. The model is based on growth due to attachment of R or S growth units to a crystal surface in a supercooled melt. Chiral symmetry breaking occurs due to chirally autocatalytic formation of R or S growth units on the growth surface. Unlike the many models suggested and studied in the 1980s, there is no cross-inhibition between R- and S-enantiomer in the model presented here. In our model, asymmetric and symmetric steady-state solutions that do not intersect were found. Through linear stability analysis, the critical point, at which a symmetric solution becomes unstable and makes a transition to an asymmetric solution, is determined.  相似文献   

2.
We solve numerically a kinetic model of chiral polymerization in systems closed to matter and energy flow, paying special attention to its ability to amplify the small initial enantiomeric excesses due to the internal and unavoidable statistical fluctuations. The reaction steps are assumed to be reversible, implying a thermodynamic constraint among some of the rate constants. Absolute asymmetric synthesis is achieved in this scheme. The system can persist for long times in quasi-stationary chiral asymmetric states before racemizing. Strong inhibition leads to long-period chiral oscillations in the enantiomeric excesses of the longest homopolymer chains. We also calculate the entropy production σ per unit volume and show that σ increases to a peak value either before or in the vicinity of the chiral symmetry breaking transition.  相似文献   

3.
4.
A recently reported symmetry breaking of density profiles of fluid argon confined by two parallel solid walls of carbon dioxide is studied. The calculations are performed in the framework of a nonlocal density functional theory. It is shown that the existence of such asymmetrical solutions is restricted to a special choice for the adsorption potential, where the attraction of the solid-fluid interaction is reduced by the introduction of a hard-wall repulsion. The behavior as a function of the slit's width is also discussed. All the results are placed in the context of the current knowledge on this matter.  相似文献   

5.
This work reports an extension of the recent study on changes of electronic structures in systems possessing nuclei with fractional charges (Cohen and Mori-Sánchez in J Chem Phys 140:044110, 2014). Using the simple Hückel framework we show that the introduction of fractional charges in molecular systems causes a symmetry breaking which leads to strong changes in the electronic densities respect to their counterpart conventional systems with integer nuclear charges. Numerical determinations in simple one- and two-electron systems within this model are qualitatively compared with the results arising from the full configuration interaction method. The described procedure allows to study ground and excited states as well as the dissociation products when the bond lengths of the molecules are stretched.  相似文献   

6.
The cationic nitrogen of zwitterion 1 is located symmetrically with respect to its intramolecular OHO hydrogen bond. Incorporation of one (18)O allows investigation of the H-bond symmetry by the NMR method of isotopic perturbation. In both CD(3)OD and CD(2)Cl(2) equilibrium isotope shifts are detected at the carboxyl and ipso carbons. Therefore, 1 exists as a pair of interconverting tautomers, not as a single symmetric structure with its hydrogen centered between the two oxygens. The H-bond is instantaneously asymmetric, and there is an equilibrium between solvatomers (isomers or stereoisomers that differ in solvation). The broader implications of this result regarding the role of the local environment ("solvation") in breaking symmetry are discussed.  相似文献   

7.
Confinement-induced symmetry breaking of interfacial surfactant layers   总被引:2,自引:0,他引:2  
Interaction forces between mesoscopic objects are fundamental to soft-condensed matter and are among the prime targets of investigation in colloidal systems. Surfactant molecules are often used to tailor these interactions. The forces are experimentally accessible and for a first theoretical analysis one can make use of a parallel-plate geometry. We present molecularly realistic self-consistent field calculations for an aqueous nonionic surfactant solution near the critical micellization concentration, in contact with two hydrophobic surfaces. The surfactants adsorb cooperatively, and form a monolayer onto each surface. At weak overlap the force increases with increasing compression of the monolayers until suddenly a symmetry braking takes place. One of the monolayers is removed jump-like and as the remaining monolayer can relax, some attraction is observed, which gives way to repulsion at further confinement. The restoring of symmetry at strong confinement occurs as a second-order transition and the force jumps once again from repulsion to attraction. It is anticipated that the metastable branch of the interaction curve will be probed in a typical force experiment. Under normal conditions pronounced hysteresis in the surface force is predicted, without the need to change the adsorbed amount jump-like.  相似文献   

8.
A kinetic model of spontaneous amplification of enantiomeric excess in the autocatalytic addition of diisopropylzinc to prochiral pyrimidine carbaldehydes is extended by a negative feedback process. Simulations based on the extended model result in large-amplitude oscillations both in a continuous-flow stirred tank reactor (CSTR) and in a semibatch configuration under optimized initial conditions. When sustained oscillations are maintained in a CSTR, no enantiomeric product distribution could be observed in the calculated series; the system keeps its initial enantiomeric ratio endlessly. During damped oscillations, or steady-state conditions, however, chiral amplification from a very small initial enantiomeric excess to more than 99% occurs in a semibatch configuration. Calculations indicated spontaneous enantiomeric product enrichment (i.e., accumulation of one of the enantiomers at the cost of the other one) from strictly achiral starting conditions in a semibatch configuration due to the inherent numerical error of the integrator method, which can be regarded as a model of the statistical fluctuation in the numbers of enantiomeric molecules.  相似文献   

9.
The four conditions of Landau's theory of symmetry and phase transitions have been applied to the NaCl-type structure to obtain the structures of crystalline solids that can result from continuous distortions or ordering processes.  相似文献   

10.
It is shown that for highly symmetric molecules the ionization of a core electron leads quite generally to a lowering of the symmetry. The breaking of the symmetry is a consequence of the vibronic coupling between nearly degenerate core orbitals of different symmetry. The vibronic coupling leads to strong excitation of non-totally symmetric vibrational modes in addition to the usually observed excitation of totally symmetric modes. As an example, the vibrational structure of the Ols line of the CO2 molecule is computed on the one-particle level.  相似文献   

11.
The systems benzene/benzene-d(1) and o-/m-/p-difluorobenzene were studied in the dense gas phase with ultrafast transient absorption spectroscopy to investigate the effect of symmetry reduction through monodeuteration and constitutional isomerism on the timescales of intramolecular vibrational energy redistribution (IVR). In both systems IVR proceeds faster in the molecules of lower symmetry. In addition the dynamics were simulated in vibrational quantum number space using a simple model based on scaling state-to-state interactions by coupling order and the energy gap law. These simulations (semi-) quantitatively reproduce the experimental data for benzene and benzene-d(1) without incorporating further molecular symmetry restrictions. The relative impact of molecular symmetry and vibrational state space structure on IVR is discussed.  相似文献   

12.
A theory is outlined of the nature and origin of drug-induced visual hallucination patterns. It is shown that such patterns correspond to blobs or stripes of visual neo-cortical activity. A neuronal circuit is described that generates such patterns whenever its homogeneous resting state becomes unstable. Such a process is shown to be an example of spontaneous symmetry-breaking, similar to that occurring in electro-weak interactions, and in fluid convection. It is suggested that the neuronal instability is produced by the action of hallucinogens on monoamine secreting brain-stem neurons.  相似文献   

13.
We investigate the influence of vibronic coupling on a molecular dimer strongly coupled to a single cavity mode. In the framework of the Holstein-Tavis-Cummings model, the energy structure of the molecular dimer is analyzed by numerical exact diagonalization and perturbation theory. Under numerical exact diagonalization, we find that the degeneracy of lower polaritons vanishes in the presence of vibronic coupling. Under the second-order degenerate perturbation theory, the degeneracy breaking of lower polaritons can be associated with asymmetric indirect interactions mediated by the upper polaritons and the dark states. The consistency of the two approaches confirms the robustness of our simulations, indicating that the vibration-induced symmetry breaking should be experimentally observed.  相似文献   

14.
ABSTRACT

We have studied the properties of biaxial particles interacting via an anisotropic pair potential, involving second-rank quadrupolar and third-rank octupolar coupling terms, using Monte Carlo simulation. The particles occupy the sites of a 2D square lattice and the interactions are restricted to nearest neighbours. The system exhibits spontaneous chiral symmetry breaking from an isotropic phase to a chiral modulated nematic phase, composed of ambidextrous chiral domains. When twofold axes of quadrupolar and octupolar tensors coincide this modulated phase appears to be the ambidextrous cholesteric phase with pitch comparable to a few lattice spacings. The associated phase transition is first order.  相似文献   

15.
16.
We have studied chiral symmetry breaking in the melt crystallization of 1,1'-binaphthyl. We confirm that chiral symmetry breaking can be induced by stirring the melt as it crystallizes. We find an additional process of vapor crystallization to occur alongside the melt crystallization. This complicates the analysis of the enantiomorphism by introducing a further phenomenon: that of polymorphism. Crystallographic studies by X-ray diffraction reveal two polymorphs of 1,1'-binaphthyl that are made up of two different conformers of each of the two enantiomeric forms of the molecule. Crystals from the melt are generally chiral tetragonal crystals (P42(1)2(1)) composed of (R)- or (S)-1,1'-binaphthyl in a transoid conformer, while those from the vapor are racemic monoclinic crystals (C2/c) made up of the cisoid conformer of both (R)- and (S)-1,1'-binaphthyl enantiomers. The main intermolecular interactions in all these crystals are weak aromatic CH/pi hydrogen bonds, which are responsible for the enantiomeric discrimination in the molecular recognition during crystallization. A tendency for whisker crystal formation is notable in 1,1'-binaphthyl. In stirred crystallization, fluid and mechanical forces can break off these whiskers, which provide secondary nuclei for further crystallization. This autocatalytic mechanism induces chiral symmetry breaking during the crystallization.  相似文献   

17.
This paper aimed at studying chiral symmetry-breaking phenomena in one crystal. Preferential crystallization of racemic asparagines was carried out in nonseeded stagnant solutions through slow cooling. By varying the supersaturation, only one transparent crystal could be obtained at enough low supersaturation of dl-asparagine, and the crystal was not pure enantiomer with crystal enantiomeric excess increasing inversely with the degree of supersaturation. Crystal enantiomeric excess can amount up to 85% in one transparent crystal. Because no secondary nucleation occurred except for stochastic primary nucleation, we suggest that primary nucleation and competition between l- and d-nuclei were considered to be a mechanism for asymmetry amplification. High-performance capillary electrophoresis coupled with laser-induced fluorescence was used to separate and quantify l- and d-asparagine and the enantiomeric excess value can be calculated according to their concentration.  相似文献   

18.
The excited-state behavior of synthetic DNA dumbbells possessing stilbenedicarboxamide (Sa) linkers separated by short A-tracts or alternating A-T base-pair sequences has been investigated by means of fluorescence and transient absorption spectroscopy. Electronic excitation of the Sa chromophores results in conversion of a locally excited state to a charge-separated state in which one Sa is reduced and the other is oxidized. This symmetry-breaking process occurs exclusively via a multistep mechanism-hole injection followed by hole transport and hole trapping-even at short distances. Rate constants for charge separation are strongly distance-dependent at short distances but become less so at longer distances. Disruption of the A-tract by inversion of a single A-T base pair results in a pronounced decrease in both the rate constant and efficiency of charge separation. Hole trapping by Sa is highly reversible, resulting in rapid charge recombination that occurs via the reverse of the charge separation process: hole detrapping, hole transport, and charge return to regenerate the locally excited Sa singlet state. These results differ in several significant respects from those previously reported for guanine or stilbenediether as hole traps. Neither charge separation nor charge recombination occur via a single-step superexchange mechanism, and hole trapping is slower and detrapping faster when Sa serves as the electron donor. Both the occurrence of symmetry breaking and reversible hole trapping by a shallow trap in a DNA-based system are without precedent.  相似文献   

19.
20.
Arrays of chemical oscillators are micropatterned by Wet Stamping. The technique is used to demonstrate that chemical waves can be initiated and controlled in oscillatory systems and that such waves can give rise to phenomena not observed in excitable media. Interoscillator coupling and synchronization, kinetic autofocusing, and twist-symmetry breaking are a consequence of the dependence of the oscillation phase on the local concentrations of reagents and on systems' geometry. Conditions under which a generic oscillatory system would exhibit such behaviors are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号