首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the fabrication, and structural and optical characterization of CdSe nanowires. Large scale uniform nanowires with length 40 micron and diameter 100 nm were grown using the simple chemical reaction technique. Morphological study of CdSe nanowires was done using scanning electron microscopy (SEM). X-ray diffraction (XRD), and Raman studies show the crystalline structure of CdSe nanowires. Energy dispersive X-ray fluorescence (EDXRF) technique was used to study the composition of CdSe nanowires. UV–Vis absorption studies show a blue shift of 0.26 eV in the optical band gap of CdSe nanowires.  相似文献   

2.
A large quantity of nanowires and nanotubes of silicon oxide are produced by using Fe–Co–Ni alloy nanoparticles as catalyst. The products have a uniform diameter of around 100 nm. The nanowires have a smooth surface and the lengths are up to 100 μm or more. A new morphology called a serrated joint nanotube was found. The alloy catalyst plays a key role in the synthesis process. Room-temperature photoluminescence measurement under excitation at 360 nm showed that the silicon oxide had a strong blue-green emission at 525 nm (about 2.36 eV), which may be related to oxygen defects. PACS 81.15.Gh; 81.07.Vb; 81.07.De; 42.70.Nq; 78.55.-m  相似文献   

3.
2 at 750 °C and 850 °C. The oxide and interface morphology are characterized by cross-sectional scanning electron microscope images. It is found that the oxidized nanowire following oxidation at 750 °C still keeps its pentagon shape even if it has been oxidized for 19 h. However, the oxidized samples at 850 °C become circular in shape. The oxidation-temperature dependence of the sample shapes is discussed. Our results should be useful in generating silicon nanowires coated with SiO2 in microelectronic technology with careful selection of the SiO2 growth temperatures. Received: 26 September 1997/Accepted: 8 December 1997  相似文献   

4.
《Current Applied Physics》2018,18(5):576-582
Core crystalline silicon nanowires with a heavily reduced amorphous shell have been successfully synthesised using palladium as a metal catalyst. We present two approaches to reduce the oxidation of the nanowires during the thermal annealing growth. The ratios of the amorphous shell to crystalline core of the nanowires produced, from the two methods, are compared and show a remarkable drop (hence thinner oxide) compared to wires fabricated using currently available techniques. In addition, a focused ion beam was utilised to contact the oxide-reduced nanowires for transport measurements, without first removing the thin oxide shell. The oxygen-reduced core-shell silicon nanowires showed a very low electrical resistivity (4 × 10−1 Ω cm). Our novel approach presents a new alternative to the production of low cost, high yield, highly conducting silicon nanowires offering a wide range of opportunities for semiconductor based technology.  相似文献   

5.
In this paper the effect of varying temperature, pressure and chemical precursors on the vapour–liquid–solid (VLS) growth of silicon nanowires (Si NWs) have been investigated. Some aspects of nucleation and growth mechanisms are discussed. Control on Si NW morphology by varying the choice of gaseous precursor (silane or dichlorosilane) at elevated temperatures is reported.  相似文献   

6.
Covalently immobilizing photoinduced electronic transfer (PET) fluorophore 3-[N, N-bis(9-anthrylmethyl)amino]-propyltriethoxysilane (DiAN) on the surface of silicon nanowires (SiNWs) resulted a SiNWs-based fluorescence switch. This fluorescence switch is operated by adjustment of the acidity of the environment and exhibits sensitive response to pH at the range from 8 to 10. Such response is attributed to the effect of pH on the PET process. The successful combination of logic switch and SiNWs provides a rational approach to assemble different logic molecules on SiNWs for realization of miniaturization and modularization of switches and logic devices.  相似文献   

7.
Strain evolution of coherent Ge islands on Si(001) is measured using a newly developed transmission electron microscopy technique based on two-beam dark-field strain imaging. The strain measurements show that a metastable Ge island shape is involved in the shape transition between pyramids and domes; this shape is more readily observed for growth at 550 than 600 degrees C because of the slower rate at which islands cross the kinetic barrier between shapes. The strain relaxation changes discontinuously between pyramids and domes, indicating that the underlying shape transition is first order.  相似文献   

8.
Sawtooth faceting in silicon nanowires   总被引:1,自引:0,他引:1  
We observe in situ the vapor-liquid-solid (VLS) growth of Si nanowires, in UHV-CVD using Au catalyst. The nanowire sidewalls exhibit periodic sawtooth faceting, reflecting an oscillatory growth process. We interpret the facet alternation as resulting from the interplay of the geometry and surface energies of the wire and liquid droplet. Such faceting may be present in any VLS growth system in which there are no stable orientations parallel to the growth direction. The sawtooth structure has important implications for electronic mobility and scattering in nanowire devices.  相似文献   

9.
The thermal conductance of individual single crystalline silicon nanowires with diameters less than 30 nm has been measured from 20 to 100 K. The observed thermal conductance shows unusual linear temperature dependence at low temperatures, as opposed to the T3 dependence predicted by the conventional phonon transport model. In contrast to previous models, the present study suggests that phonon-boundary scattering is highly frequency dependent, and ranges from nearly ballistic to completely diffusive, which can explain the unexpected linear temperature dependence.  相似文献   

10.
Metal nanocrystals as catalyst from a metal oxide film were fabricated at various temperatures after hydrogen radical treatment and great quantities of silicon nanowires (SiNWs) were successfully synthesized using the hydrogen microwave afterglow deposition method. Indium (In) metal nanocrystals with size of about 12 nm were obtained from indium oxide film after hydrogen radical pre-treatment for 5 min at 400 °C and their quantity reached approximately 3 × 1010 cm−2. Subsequently, a numerous SiNWs were grown with the crystal diffraction of (1 1 1), (2 2 0) and (3 1 1). The diameters of the SiNWs mainly ranged from 5 to 120 nm and their lengths extended to about 8.5 μm.  相似文献   

11.
Silicon–silicon dioxide core-shell nanowires grown on gold-coated silicon wafers by thermal evaporation of silicon monoxide sometimes show an oscillation in diameter. The two possible causes for this behaviour are a self-oscillation process during the growth or the so-called Rayleigh instability. By analyzing the thickness distribution of the nanowires, we will show that a self-oscillation process is responsible for the periodic instability during growth. In contrast, during post-growth etching and oxidation the nanowires can develop Rayleigh instabilities, leading to silicon nanocrystals embedded in silicon dioxide nanowire. PACS 61.46.+w; 81.10.-h; 81.40.-z  相似文献   

12.
Confinement character and its effects on photoluminescence (PL) properties are theoretically investigated and compared between porous silicon (p-Si) and silicon nanowires (Si-NWs). The method is based on the application of the tight-binding technique using the minimal sp3-basis set, including the second-nearest-neighbor interactions. The results show that the quantum confinement (QC) is not entirely controlled by the porosity, rather it is mainly affected by the average distance between pores (d). The p-Si is found to exhibit weaker confinement character than Si-NWs. The confinement energy of charge carriers decays against d exponentially for p-Si and via a power-law for Si-NWs. This latter type of QC is much stronger and is somewhat similar to the case of a single particle in a quantum box. The excellent fit to the PL data demonstrates that the experimental samples of p-Si do exhibit strong QC character and thus reveals the possibility of silicon clustering into nano-crystals and/or nanowires. Furthermore, the results show that the passivation of the surface dangling bonds by the hydrogen atoms plays an essential role in preventing the appearance of gap states and consequently enhances the optical qualities of the produced structures. The oscillator strength (OS) is found to increase exponentially with energy in Si-NWs confirming the strong confinement character of carriers. Our theoretical findings suggest the existence of Si nanocrystals (Si-NCs) of sizes 1-3 nm and/or Si-NWs of cross-sectional sizes in the 1-3 nm range inside the experimental p-Si samples. The experimentally-observed strong photoluminescence from p-Si should be in favor of an exhibition of 3D-confinement character. The favorable comparison of our theoretical results with the experimental data consolidates our above claims.  相似文献   

13.
Honey S  Naseem S  Ishaq A  Maaza M  Bhatti M T  Wan D 《中国物理 B》2016,25(4):46105-046105
A random two-dimensional large scale nano-network of silver nanowires(Ag-NWs) is fabricated by MeV hydrogen(H~+) ion beam irradiation. Ag-NWs are irradiated under H~+ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H~+ion beam-induced welding of Ag-NWs at intersecting positions. H~+ion beam induced welding is confirmed by transmission electron microscopy(TEM) and scanning electron microscopy(SEM). Moreover, the structure of Ag NWs remains stable under H~+ion beam, and networks are optically transparent. Morphology also remains stable under H~+ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H~+ion beam irradiation.The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices.  相似文献   

14.
From first-principles calculations, we predict that specific transition metal (TM) atom-adsorbed silicon nanowires have a half-metallic ground state. They are insulators for one spin direction, but show metallic properties for the opposite spin direction. At high coverage of TM atoms, ferromagnetic silicon nanowires become metallic for both spin directions with high magnetic moment and may have also significant spin polarization at the Fermi level. The spin-dependent electronic properties can be engineered by changing the type of adsorbed TM atoms, as well as the diameter of the nanowire. Present results are not only of scientific interest, but also can initiate new research on spintronic applications of silicon nanowires.  相似文献   

15.
Soliton-like propagation of ultra-short pulses in dispersion-engineered silicon photonic wires is theoretically investigated via the nonlinear Schrödinger equation. It is shown that by proper patterning of silicon waveguides, the engineering of group velocity dispersion can effectively compensate for both linear and two-photon absorption-induced nonlinear losses. Quasi-soliton propagation is demonstrated for 100-fs pulses over large propagation lengths for a realistic silicon wire of optimally patterned waveguide width.  相似文献   

16.
Thermal conductivity of silicon and porous silicon nanowires based on the equation of phonon radiative transport is theoretically evaluated. The thermal conductivities of silicon nanowires with square cross-sections are found to match molecular dynamics simulation results reasonably well. It is shown that the results of meso-porous silicon nanowires are about two orders of magnitude lower than that of silicon nanowires in a wide range of temperature (50 K-300 K). Received 24 April 2001 and Received in final form 23 December 2001  相似文献   

17.
Silicon nanowires grown along the 100 direction with a bulk Si core are studied with density-functional calculations. Two surface reconstructions prevail after exploration of a large fraction of the phase space of nanowire reconstructions. Despite their energetical equivalence, one of the reconstructions is found to be strongly metallic while the other one is semimetallic. This electronic-structure behavior is dictated by the particular surface states of each reconstruction. These results imply that doping is not required in order to obtain good conducting Si nanowires.  相似文献   

18.
Junwen Li 《Molecular physics》2015,113(3-4):274-281
We report first-principles simulation results for the electronic band structure of Si nanowires (SiNWs) aligned along the ?100? and ?110? directions with H, OH, and CH3 substituents passivating the surfaces. The ?100? wires studied have {110} faces and square cross-sections with diameters up to 1.73 nm, while the ?110? wires have {111} faces and diamond cross-sections with diameters up to 1.46 nm. We found that passivation using OH or CH3 groups reduced the band gaps compared to H-terminated ?100? SiNWs, and passivation using CH3 groups produced systems with indirect gaps for all ?100? SiNWs studied. All band gaps were direct in the ?110? SiNWs independent of passivation. The near-gap orbitals are greatly affected by the different substituents. We also found that the carrier effective masses of ?100? SiNWs are sensitive to the diameter and passivation, while those of ?110? SiNWs are not.  相似文献   

19.
We study anomalies in the Coulomb blockade spectrum of a quantum dot formed in a silicon nanowire. These anomalies are attributed to electrostatic interaction with charge traps in the device. A simple model reproduces these anomalies accurately and we show how the capacitance matrices of the traps can be obtained from the shape of the anomalies. From these capacitance matrices we deduce that the traps are located near or inside the wire. Based on the occurrence of the anomalies in wires with different doping levels we infer that most of the traps are arsenic dopant states. In some cases the anomalies are accompanied by a random telegraph signal which allows time resolved monitoring of the occupation of the trap. The spin of the trap states is determined via the Zeeman shift.  相似文献   

20.
Panoiu NC  Chen X  Osgood RM 《Optics letters》2006,31(24):3609-3611
We demonstrate that strong modulation instability (MI) of copropagating optical waves can be observed in Si photonic nanowires with a length of only a few millimeters. We consider two distinct cases, namely one in which one wave propagates in the normal group-velocity dispersion (GVD) region and the other one experiences anomalous GVD, and a second case in which both waves propagate in the anomalous GVD region. In both cases we show that, for comparable optical powers, the peak value of the MI gain spectrum is 2 to 3 orders of magnitude larger than that achieved in optical fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号