首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies Portland cement paste heated up to different temperatures ranging from 105 to 1,000 °C by X-ray diffraction. The heated cement paste samples are kept isothermal in furnace for 6 h and cooled down to 100 °C. Then the samples are picked out and grinded into fine powders. 10 % Corundum is blended with cement paste powders as an internal standard. Quantitative phase analysis of cement paste samples is performed by Rietveld method. With the addition of a crystalline standard, the mass fractions of all crystalline phases as well as amorphous calcium silicate hydrate (C–S–H) are determined. The Rietveld analysis results are compared with independent measurements of the same material by thermal analysis (TG/DSC). The phase transition of Portland cement paste is discussed. An empirical relationship between the dehydration degree of C–S–H and the crystallization degree of C–S–H is derived.  相似文献   

2.
Red and white painting layers from Celtic pottery from Southern Poland (Modlniczka 2 site near Kraków) were investigated with the use of Raman microspectroscopy, SEM/EDS and optical microscopy. The painting layers were performed homogeneously for all the examined shards, i.e. red layers as thinner, ca. 0,02 mm and white of 0,04 mm. The white painting layers are very fine grained and amorphous under SEM, prepared of compositionally complex magnesium based raw material, with phosphates and fluorite probably used as fluxes. Unusual phases: fluorite and silicon were identified. Raman spectroscopy of fine grained red painting layers revealed the presence of hematite and anatase/leucoxen. Again, rare phases, of silicon and destinezite were found. Both paints were carefully manufactured by grinding and homogenizing the raw materials. Their preliminary firing cannot be excluded. The painted pottery was fired approx. at 700–900 °C, but multistage firing is possible.  相似文献   

3.
《Vibrational Spectroscopy》2008,46(2):117-121
Minerals have been used as pigments for thousands of years. Red and yellow pigments are generally associated with iron oxides or, specifically, hematite (α-Fe2O3) and goethite (α-FeOOH). It is well known that, under heating, goethite dehydrates forming hematite. An interesting question yet to be answered is whether the pre-historical artists used this knowledge to obtain other shades of red and yellow or used the raw mineral directly.Raman spectroscopy was employed to address this question and XRD, TEM and TG were used as supporting techniques. Ex situ and in situ Raman spectra were obtained and it was observed that in the 250–300 °C temperature range, broad hematite features appears as a consequence of goethite dehydration. In the spectra of the heated sample a band at 657 cm−1 is of particular interest, as it is much more intense than in natural hematite; the possibility that it could be assigned as a magnetite band was discarded. At higher temperatures (900–1000 °C) the disordered structure is perfected and a Raman spectrum similar to a crystalline natural hematite sample is obtained.Temperatures in the 600–700 °C range can be easily reached, thus disordered hematite could be obtained from goethite heating even in ancient times, however, heat is not the only agent able to produce disordered hematite, since grinding, biodegradation and weathering can produce the same effect. Raman spectra obtained from weathered samples are also representative of disordered hematite.The data here reported indicate that it is not possible to differentiate heated goethite from other disordered hematites.  相似文献   

4.
In this project, we synthesized TiO2 compounds through the molten salt method (MSM) using Ti(IV) oxysulfate, as the Ti source. Molten salts in the ratio of 0.375 M LiNO3:0.180 M NaNO3:0.445 M KNO3 were added and heated at temperatures of 145, 280, 380, and 480 °C for 2 h in air, respectively. A part of the sample prepared at 145 °C was further reheated to 850 °C for 2 h in air. X-ray diffraction studies showed that the amorphous phase was obtained when the sample was prepared at 145 °C, and polycrystalline to crystalline anatase phase was formed when heated from 280 to 850 °C, which is complementary to the results of selected area electron diffraction studies. Electrochemical properties were studied using galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy at a current density of 33 mA g?1 (0.1 C rate) and a scan rate of 0.058 mV s?1, in the voltage range 1.0–2.8 V vs. Li. Electrochemical cycling profiles for the amorphous TiO2 samples prepared at 145 °C showed single-phase reaction with a low reversible capacity of 65 mAh g?1, whereas compounds prepared at 280 °C and above showed a two-phase reaction of Li-poor and Li-rich regions with a reversible capacity of 200 mAh g?1. TiO2 produced at 280 °C showed the lowest capacity fading and the lowest impedance value among the investigated samples.  相似文献   

5.
Morphological and thermodynamic transitions in drugs as well as their amorphous and crystalline content in the solid state have been distinguished by thermal analytical techniques, which include dielectric analysis (DEA), differential scanning calorimetry (DSC), and macro-photomicrography. These techniques were used successfully to establish a structure versus property relationship with the United States Pharmacopeia standard set of active pharmaceutical ingredient (API) drugs. A distinguishing method is the DSC determination of the amorphous and crystalline content which is based on the fusion properties of the specific drug and its recrystallization. The DSC technique to determine the crystalline and amorphous content is based on a series of heat and cool cycles to evaluate the drugs ability to recrystallize. To enhance the amorphous portion, the API is heated above its melting temperature and cooled with liquid nitrogen to ?120 °C (153 K). Alternatively a sample is program heated and cooled by DSC at a rate of 10 °C min?1. DEA measures the crystalline solid and amorphous liquid API electrical ionic conductivity. The DEA ionic conductivity is repeatable and differentiates the solid crystalline drug with a low conductivity level (10?2 pS cm?1) and a high conductivity level associated with the amorphous liquid (10pS cm?1). The DSC sets the analytical transition temperature range from melting to recrystallization. However, analysis of the DEA ionic conductivity cycle establishes the quantitative amorphous and crystalline content in the solid state at frequencies of 0.10–1.00 Hz and to greater than 30 °C below the melting transition as the peak melting temperature. This describes the “activation energy method.” An Arrhenius plot, log ionic conductivity versus reciprocal temperature (K?1), of the pre-melt DEA transition yields frequency dependent activation energy (E a, J mol?1) for the complex charging in the solid state. The amorphous content is inversely proportional to the E a where the E a for the crystalline form is higher and lower for the amorphous form with a standard deviation of ±2%. There was a good agreement between the DSC crystalline melting, recrystallization, and the solid state DEA conductivity method with relevant microscopic evaluation. An alternate technique to determine amorphous and crystalline content has been established for the drugs of interest based on an obvious amorphous and crystalline state identified by macro-photomicrography and compared to the conductivity variations. This second “empirical method” correlates well with the “activation energy” method.  相似文献   

6.
The quintessential form of cellulose in wood consists of microfibrils that have high aspect ratio crystalline domains embedded within an amorphous cellulose domain. In this study, we apply united-atom molecular dynamics simulations to quantify changes in different morphologies of cellulose. We compare the structure of crystalline cellulose with paracrystalline and amorphous phases that are both obtained by high temperature equilibration followed by quenching at room temperature. Our study reveals that the paracrystalline phase may be an intermediate, kinetically arrested phase formed upon amorphisation of crystalline cellulose. The quenched structures yield isotropic amorphous polymer domains consistent with experimental results, thereby validating a new computational protocol for achieving amorphous cellulose structure. The non-crystalline cellulose compared to crystalline structure is characterized by a dramatic decrease in elastic modulus, thermal expansion coefficient, bond energies, and number of hydrogen bonds. Analysis of the lattice parameters shows that Iβ cellulose undergoes a phase transition into high-temperature phase in the range of 450–550 K. The mechanisms of the phase transition elucidated here present an atomistic view of the temperature dependent dynamic structure and mechanical properties of cellulose. The paracrystalline state of cellulose exhibits intermediate mechanical properties, between crystalline and amorphous phases, that can be assigned to the physical properties of the interphase regions between crystalline and amorphous cellulose in wood microfibrils. Our results suggest an atomistic structural view of amorphous cellulose which is consistent with experimental data available up to date and provide a basis for future multi-scale models for wood microfibrils and all-cellulose nanocomposites.  相似文献   

7.
Thermal analysis of some sericite clays, from several deposits in Spain, which are not exploited at this time, has been studied. The samples have been previously characterized by mineralogical and chemical analysis. Sericite clays have interesting properties, with implications in ceramics and advanced materials, in particular concerning the formation of mullite by heating. According to this investigation by differential thermal and thermogravimetric analysis (DTA-TG), the sericite clay samples can be classified as: Group (I), sericite–kaolinite clays, with high or medium sericite content, characterized by an endothermic DTA peak of dehydroxylation of kaolinite with mass loss, which overlapped with dehydroxylation of sericite, and Group (II), sericite–kaolinite–pyrophyllite clays, with broader endothermic DTA peaks, in which kaolinite is dehydroxylated first and later sericite and pyrophyllite with the main mass loss, appearing the peaks overlapped. X-ray diffraction analysis of the heated sericite clay samples evidenced the decomposition of dehydroxylated sericite and its disappearance at 1050 °C, with formation of mullite, the progressive disappearance of quartz and the formation of amorphous glassy phase. The vitrification temperature is ~ 1250 °C in all these samples, with slight variations in the temperatures of maximum apparent density (2.41–2.52 g mL?1) in the range 1200–1300 °C. The fine-grained sericite content and the presence of some mineralogical components contribute to the formation of mullite and the increase in the glassy phase by heating. Mullite is the only crystalline phase detected at 1400 °C with good crystallinity. SEM revealed the dense network of rod-shaped and elongated needle-like mullite crystals in the thermally treated samples. These characteristics are advantageous when sericite clays are applied as ceramic raw materials.  相似文献   

8.
The reaction behavior of sodium chloride sodalite Na8[AlSiO4]6Cl2 in ammonium chloride solution has been investigated under mild hydrothermal conditions (T = 473 K) for reaction times up to 72 h. Reactions under weak acid conditions led to an amorphous aluminosilicate phase comparable to a leaching process. This material forms an amorphous layer around the sodalite grains, preventing the framework from further decomposition. About 52% of sodalite was damaged by acid leaching after 11 hours and this amount remains nearly constant even at longer reaction periods up to 72 hours. Cation exchange was observed in sodalite only on a very low level (< 10%). Beside these reactions under acid conditions (pH » 5) some additional experiments in alkaline solutions were done to improve ion exchange of sodalite. Thus an ammonium/ammonia buffer solution was used (pH » 9) at various temperatures in a range of 353 – 473 K. Neither cation exchange nor decomposition of the sodalite was obtained at 353 and 393 K after 72 hours. Formation of amorphous material started at 433 K. In contrast to the acid conditions a total transformation of sodalite into a crystalline ammonium aluminosilicate phase was observed at 473 K.  相似文献   

9.
Thermal analysis (TA) techniques were applied in order to predict the influence of thermal treatment, on the photocatalytic performance of TiO2 materials prepared via sol–gel method in various temperatures between 250 and 600 °C in different alcohols (methanol/ethanol). Calorimetric results showed that the formation of TiO2 is faster in methanol than in ethanol. TA patterns showed that slight differences observed in the thermal behavior of the material can affect both its textural and photocatalytic properties. The appearance of the endothermic peaks in the area of 250–450 °C refer to crystallization of amorphous to crystalline phases or to the transformation of the less active rutile to the more active anatase phase. The results obtained from TG/DSC are in accordance to XRD results and SEM images. Thermal treatment affects the photocatalytic properties of the materials. Samples prepared in methanol showed better photocatalytic behavior than those in ethanol while the increase in temperature decreases the effectiveness of the materials.  相似文献   

10.
The influence of TiO2 nanopowder doping with 4 wt% indium and 2 wt% each of indium and chromium on phase transformation was studied. Samples were heated from ambient temperature to 950 °C in sealed quartz capillaries, and in-situ synchrotron radiation diffraction measurements were obtained. Capillary sealing yielded an increase in capillary gas pressure to 0.42 MPa at 950 °C in proportion to absolute temperature by Gay-Lussac’s Law. The initial synthesized samples were amorphous, and crystalline anatase appeared at 200 °C. Crystalline rutile appeared at 850 °C for the nanomaterials that were doped with In and In and Cr. A change in sealed-capillary oxygen partial pressure yielded a decrease and an increase in crystallization temperature, respectively, for the amorphous-to-anatase and anatase-to-rutile transformations. Crystalline titania (anatase and rutile) formed from the amorphous titania by 800 °C and 900 °C, for materials doped with In and In-Cr, respectively. The anatase concentration that was dominant in the In-doped materials up to 950 °C and the higher rutile concentration for the In-Cr doped materials from 900 to 950 °C results from the defect structure that was induced by doping. Cr-ions in the Ti sub-lattice retarded the transformation of anatase to rutile when compared with the retarding effect of mixed In/Cr ions. The transformation results because of the relatively smaller radius of Cr-ions when compared with the In-ions. The differences in phase-transformation kinetics for In, In-Cr and for undoped nanopowders in the literature agree with the calculated transformation activation energies.  相似文献   

11.
Fourier Transform Infrared spectroscopy (FTIR) and Wide‐Angle X‐Ray Diffraction (WAXD) measurements have clearly established the occurrence of a dual sorption ability of sulfonated syndiotactic polystyrene samples, which exhibit the nanoporous δ crystalline phase. In fact, large uptake (up to 20–30 wt%) of ionic liquid (IL; e.g. 1‐ethyl‐3‐methylimidazolium dicyanamide) occurs only in the hydrophilic amorphous sulfonated phases and does not disturb the hydrophobic nanoporous crystalline δ phase. On the other hand, a large uptake of organic guests (e.g. naphthalene) occurs prevailingly in the nanoporous hydrophobic crystalline phase, independently of the presence of the IL in the amorphous phase, eventually leading to the formation of syndiotactic polystyrene co‐crystalline phases. The thermal stability of IL can be largely increased by their inclusion in the amorphous phase of sulfonated syndiotactic polystyrene films. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Even though it is a potential visible-light responsive photocatalyst, the application of BiFeO3 (BFO) is restricted because of the presence of residual impurities in the synthesis process. To alleviate this problem, in this work, BiFeO3 was synthesized by the sonochemical method and calcined at different temperatures. Morphologies and phases of the samples were evaluated by using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques. UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS) was used to analyze the absorption properties. The photocatalytic activities of the samples were evaluated via the photocatalytic degradation of rhodamine-B (RhB) aqueous solution under simulated solar light irradiation. The results revealed that the phase transformation from amorphous to crystalline phase has occurred during heat treatment. The formation of pure BFO occurred only at about 600 °C, indicating the importance of heat treatment during the synthesis process. On the other hand, the decolorization of RhB solution was completed by pure BFO photocatalyst within 1 h of simulated solar light irradiation.  相似文献   

13.
The preparation procedure of silica–titania composite oxide using novel solution/sol single precursor containing titanium peroxocomplex and silicic acid has been described. Pechini-type sol–gel process has been used to prepare oxides from the aqueous precursor. Some structural, morphological and textural characteristics of the prepared material have been presented. Composite SiO2/TiO2 has high surface area (c.a. 300 m2/g), and it is composed of anatase nanoparticles with the mean diameter of 5 nm embedded in amorphous silica, then TiO2 prepared via similar method is presented as a mixture of anatase and rutile phases. The proposed synthetic procedure meets the requirements of “green chemistry”.  相似文献   

14.
Monolithic macroporous titanium dioxide (TiO2) derived from ionic precursors has been successfully prepared via the sol–gel route accompanied by phase separation in the presence of formamide (FA) and poly(vinylpyrrolidone) (PVP). The addition of FA promotes the gelation, whereas PVP enhances the polymerization-induced phase separation. Appropriate choice of the starting compositions allows the production of cocontinuous macroporous TiO2 monoliths in large dimensions, and controls the size of macropores. The resultant dried gel is amorphous, whereas anatase and rutile phases are precipitated at 500 and 900 °C respectively, without spoiling the macroporous morphology. Nitrogen adsorption–desorption measurements revealed that the dried gels exhibits mesostructure with a median pore size of about 3 nm and BET surface area of 228 m2/g, whereas 15 nm and 73 m2/g for the gels calcined at 600 °C.  相似文献   

15.
Sorption of Eu(III), an analogue of trivalent actinides (Am, Cm), by amorphous titania as well as different crystalline phases of titania, namely anatase and rutile, have been studied as a function of pH, using 154Eu (half life?=?8.8 yrs, E???=?123,247?keV) as a radiotracer. The objective of this study was to investigate the effect of the crystalline phase of the titania on their sorption behaviour towards the metal ion. Amorphous titania was prepared by organic route and was converted into anatase and rutile by heating at elevated temperatures based on the differential thermal analysis studies. Eu(III) sorption by all forms of titania rises sharply with the pH of the suspension, with the sorption edge shifting to higher value in the order; amorphous?<?anatase?<?rutile. However, the normalization of the sorption data to the surface area of the sorbents resulted in the overlapping of the sorption curves for amorphous and anatase phases, with the data being higher for rutle in the lower pH region, indicating the effect of the crystal phase on sorption behaviour of Eu(III).  相似文献   

16.
A dysprosium aluminum garnet (DAG) nanopowder was synthesized by aqueous sol–gel method using Al powder, HCl and Dy(CH3COO)3·4H2O as raw materials. The dried amorphous gel was heat treated in the range of 800–1,200 °C. The influence of heat treatment on crystallization and phase transformation of the dried gel was investigated using X-ray diffractometery, scanning electron microscopy, thermogravimetry and differential thermal analysis and Fourier transform infrared spectroscopy. It was shown that the gel calcined from 900 to 1,200 °C resulted in the formation of a crystalline DAG nanopowder with particle size distribution ranges from 26 to 98 nm.  相似文献   

17.
Poly(ethylene naphthalene‐2,6‐dicarboxylate) has been uniaxially stretched at different draw ratios and at two different temperatures below and above its glass transition (Tg ~ 120 °C) respectively, at 100 and 160 °C. Crystallinity has been evaluated from calorimetric analyses and compared to the values deduced by FTIR spectroscopic data. As expected, the obtained results are quite similar and show that films stretched at lower temperature (100 °C) are more crystalline than those stretched at 160 °C. Optical anisotropy associated with orientation has been evaluated by birefringence and show that films stretched at 100 °C are more birefringent than those stretched at 160 °C as a result of a higher chain relaxation above Tg. Polarized FTIR was also performed to evaluate the individual orientation of amorphous and crystalline phases by calculating dichroic ratios R and orientation functions 〈P2(cos θ)〉 and also show that amorphous and crystalline phases are more oriented in the case of films stretched below Tg. Nevertheless, the orientation of the amorphous phase is always weaker than that of the crystalline phase. Films stretched at 100 °C show a rapid increase in orientation (and crystallinity) with draw ratio and 〈P2(cos θ)〉 reaches a limit value when draw ratio becomes higher than 3.5. Films drawn at 160 °C are less oriented and their orientation is increasing progressively with draw ratio without showing a plateau. A careful measurement of the IR absorbance was necessary to evaluate the structural angles of the transition moments to the molecular chain axis. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1950–1958, 2007  相似文献   

18.
We focused to highlight the effect of quenching on the development and ordering of non-aqueous lyotropic liquid crystalline phases. Lyotropic mesophases are prepared from binary mixtures of sodium dodecyl sulphate and ethylene glycol at varying concentrations 30:70 and 50:50 wt%. The obtained self-assembled phases are characterised by X-ray diffraction, polarisation optical microscopy, differential scanning calorimetry and dielectric spectroscopy to evaluate the structural, optical, thermal and dielectric behaviours. Structural and textural measurements confirmed mesomorphic and crystalline phases for both mixtures. Calorimetric study gives insight about the growth of new phases at ≈335 K and isotropic temperatures of these mixtures. Both the mixtures are quenched from 335 K to the 303 K to analyse the effect of quenching on the structure and ordering of mesophases. We noticed well-defined hexagonal liquid crystalline mesophases for both concentrations after quenching at 303 K. Dielectric and relaxation behaviours of quenched mesophases were also examined. Higher capacitance and dielectric strength are noticed for quenched mixtures. The application prospective of such phases is also discussed.  相似文献   

19.
Titanium dioxide (TiO2) thin films were deposited onto p‐Si substrates held at room temperature by reactive Direct Current (DC) magnetron sputtering at various sputter powers in the range 80–200 W. The as‐deposited TiO2 films were annealed at a temperature of 1023 K. The post‐annealed films were characterized for crystallographic structure, chemical binding configuration, surface morphology and optical absorption. The electrical and dielectric properties of Al/TiO2/p‐Si structure were determined from the capacitance–voltage and current–voltage characteristics. X‐ray diffraction studies confirmed that the as‐deposited films were amorphous in nature. After post‐annealing at 1023 K, the films formed at lower powers exhibited anatase phase, where as those deposited at sputter powers > 160 W showed the mixed anatase and rutile phases of TiO2. The surface morphology of the films varied significantly with the increase of sputter power. The electrical and dielectric properties on the air‐annealed Al/TiO2/p‐Si structures were studied. The effect of sputter power on the electrical and dielectric characteristics of the structure of Al/TiO2/p‐Si (metal‐insulator‐semiconductor) was systematically investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Soft–hard binary polymer blends consisting of amorphous poly(silylene methylene)s (PSMs) and crystalline poly(diphenylsilylenemethylene) were prepared by both melt processing at 360 °C and in situ polymerization at 300 °C. Linear and siloxane‐crosslinked PSMs were used as amorphous components for the purpose of determining how the crosslinks affected the interactions between the component polymers. Differential scanning calorimetry and dynamic mechanical analysis indirectly suggested that discernable differences between the blends containing linear and crosslinked PSMs were attributable to the degree of interactions between the amorphous and crystalline components. The morphological differences between these blends were studied with transmission electron microscopy. The dispersion phase was smaller in the blends containing crosslinked PSM than that in the blends containing linear PSM. This directly indicated that a larger interaction between the amorphous and crystalline phases was obtained by the introduction of crosslinks because of the smaller viscosity difference between the phases and a larger degree of polymer chain entanglement. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 257–263, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号