首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel Salen-type bisoxime ligand, 6,6′-dimethoxy-2,2′-[(1,4-butylene)dioxybis(nitrilomethylidyne)]diphenol (H2L) and its tetranuclear Cu(II) complex, [Cu4L2(pic)4(H2O)2]·2H2O, have been synthesized and characterized by elemental analyses, IR, TG-DTA and 1H-NMR etc. The X-ray crystal structure of the complex reveals that formation of a tetranuclear structure, which consists of four copper(II) atoms, two pentadentate L2−units, four picratols, two coordinated water molecules and two crystallizing water molecules. Around four copper ions are all octahedral geometries. It was demonstrated that the picratols in the tetranuclear copper(II) complex show a novel tridentate coordination mode.  相似文献   

2.
The compound [Co(NH3)6]2[W4Se4(CN)12]·8.5H2O was obtained by evaporating an aqueous ammonia solution of K6[W4Se4(CN)12]·6H2O and CoCl2·6H2O complexes. The starting Co(II) of CoCl2·6H2O transforms into [Co(NH3)6]3+ when exposed to air in a water-ammonia medium. Crystal data: triclinic crystal system, a = 10.7750(8) Å, b = 12.2843(9) Å, c = 19.6539(14) Å; α = 90.213(2)°, β = 99.910(2)°, γ = 114.737(1)°, V = 2319.1(3) Å3, space group , Z = 2, D x = 2.633 g/cm3.Original Russian Text Copyright © 2004 by I. V. Kalinina, Z. A. Starikova, F. M. Dolgushin, D. G. Samsonenko, and V. P. Fedin__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 5, pp. 905–908, September–October, 2004.  相似文献   

3.
The single phase NH4NiPO4·6H2O was synthesized by solid-state reaction at room temperature using NiSO4·6H2O and (NH4)3PO4·3H2O as raw materials. XRD analysis showed that NH4NiPO4·6H2O was a compound with orthorhombic structure. The thermal process of NH4NiPO4·6H2O experienced three steps, which involves the dehydration of the five crystal water molecules at first, and then deamination, dehydration of the one crystal water, intramolecular dehydration of the protonated phosphate groups together, at last crystallization of Ni2P2O7. In the DTA curve, the two endothermic peaks and an exothermic peak, respectively, corresponding to the first two steps’ mass loss of NH4NiPO4·6H2O and crystallization of Ni2P2O7. Based on Flynn–Wall–Ozawa equation, and Kissinger equation, the average values of the activation energies associated with the thermal decomposition of NH4NiPO4·6H2O, and crystallization of Ni2P2O7 were determined to be 47.81, 90.18, and 640.09 kJ mol−1, respectively. Dehydration of the five crystal water molecules of NH4NiPO4·6H2O, and deamination, dehydration of the crystal water of NH4NiPO4·H2O, intramolecular dehydration of the protonated phosphate group from NiHPO4 together could be multi-step reaction mechanisms. Besides, the thermodynamic parameters (ΔH , ΔG , and ΔS ) of the decomposition reaction of NH4NiPO4·6H2O were determined.  相似文献   

4.
The structure of the salt Cs[Gd(H2O)4Re6Te8(CN)6]·4H2O (space group P-1, a = 9.436(5) Å, b = 12.365(7) Å, c = 15.187(8)Å, α = 89.104(10)°, β = 86.996(10)°, γ = 82.304(9)°) has been established by single crystal XRD. The structure of the compound features layers involving Gd3+ cations bound to cluster anions [Re6Te8(CN)6]4? through cyanide groups. The interlayer space contains cesium cations and crystallization water molecules.  相似文献   

5.
Under hydrothermal conditions, the complex [Mn(lmdc)2(H2O)2] · 2H2O (I) was synthesized and characterized by elemental analysis and IR spectrum (HImdc = 4,5-imidazofedicarboxylic acid). The crystal structure of I was determined by single-crystal X-ray diffraction (crystallizing in the monoclinic crystal system, P 2/c space group, a = 11.000(2), b = 7.1281(14), c = 12.696(3) Å, β = 122.45(3), Z = 2. In I, the Mn2+ ion was chelated by two Imdc with one of their nitrogen atoms and a carboxylic oxygen atom, while two water molecules occupy the axial position of the Mn atom forming a distorted octahedral geometry. Three-dimensional structure of I was formed by intermolecular hydrogen bonds. UV-Vis and fluorescence spectra of I interacting with DNA show that insertion is the main binding mode between I and fish sperm DNA. Gel electrophoresis shows that I cleaves both supercoiled and circular pBR322 DNA to form a small molecular fragment.  相似文献   

6.
Synthesis of a mixed complex compound Pb2[Fe(CN)6]NO3·5.5H2O is described. The results of its X-ray structural investigation are presented. Crystal data: C6H11FeN7O8.50Pb2: a = 7.2582(6) Å, b = 21.838(3) Å, c = 11.612(1) Å; β = 107.91(1)°, V = 1751.4(3) Å3, Z = 4, dcalc = 2.986 g/cm3, space group P21/m, R = 0.038. The compound has a framework polymer structure.  相似文献   

7.
The crystal structure of the double complex salt (DCS) [PdEn2]3[Rh(NO2)6]2 ? 2.67H2O (I) has been determined by X-ray diffraction. Crystals are triclinic, space group \(P\bar 1\), Z = 4, a = 9.2331(3) Å, b = 9.9136(4) Å, c = 13.7824(5) Å, α = 84.3230(14)°, β = 89.9655(14)°, γ = 66.7272(13)°, V = 1152.19(7) Å3, ρcalcd = 2.141 g/cm3, R = 0.0279. The thermal behavior of complex salt I has been studied in various gas atmospheres. The end product of thermolysis in reductive atmosphere is a mixture of Pd0.45Rh0.55 and Pd0.95Rh0.05 solid solutions. The end product of thermolysis in an inert atmosphere is a homogeneous Pd0.6Rh0.4 solid solution.  相似文献   

8.
[RhPy4Cl2]4[Re6S8(CN)6]·1.5H2O (Py is pyridine) was investigated by X-ray analysis. In the cluster anion, the Re-Re distances vary from 2.6063(2) Å to 2.6125(2) Å. For two crystallographically independent complex cations, the distances are 〈Rh-N〉 2.060 Å and 〈Rh-Cl〉 2.336 Å. The motif of the three-layered close packing was found; the [Re6S8(CN)6]4? anions follow the vertices of a rhombohedron with the parameters a c ≈ 15.5 Å and αc ≈ 61°.  相似文献   

9.
The thermal transformations of disubstituted cesium orthophosphate crystal hydrate under heating in air up to 400°C have been studied. The dehydration process occurs in two stages with the loss of 0.6 water molecules at 60?100°C and 1.4 water molecules at 100?160°C. Anhydrous Cs2HPO4 is stable up to 300°C and is completely converted into cesium pyrophosphate Cs4P2O7 at 330°C. The structure of Cs2HPO4 · 2H2O has been determined. The compound crystallizes in monoclinic space group P21/c and has the unit cell parameters a = 7.4761(5) Å, b = 14.2125(8) Å, c = 7.9603(6) Å, β = 116.914(5)°, V = 754.20(9) Å3, and Z = 4 at?123°C. An earlier unknown polymorph of Cs4P2O7 has been found. According to X-ray powder diffraction data, hexagonal space group Р63 has been proposed for the formed pyrophosphate.  相似文献   

10.
The associate [K(18C6)]3[In(NCS)6] · 2H2O was synthesized and structurally characterized. The structure was formed by the octahedral anions [In(NCS)6]3−, crystallographically independent cations [K(18C6)]+, and molecules of water of crystallization. The complex anion and one of the two cations formed polymeric chains (-In-NCS-K-) n . The second cation coordinated one of the sulfur atoms of the polymer chain.  相似文献   

11.
[Cd(NTO)4Cd(H2O)6] •4H2O was synthesized by mixing the aqueous solution of 3-nitro-1, 2,4-triazol-5-one (NTO) and cadmium carbonate. The single crystal structure was determined by a four-circle X-ray diffractometer. The crystal is monoclinic, space group C2/c with crystal parameters of a = 2.1229(3) nm, b = 0.6261(8) nm, = 2.1165(3) nm, β= 90.602 (3)°, V= 2.977(6) nm3, Z = 4, Dc = 2.055 g • cm-3, μ = 15.45 cm-1 and F(000) = 1824. 2523 observable independent reflections with F04σ(F0) were used for the determination and refinement of the crystal structure. Lorentz-polarization and absorption correction were applied. The final R is 0.0282 and wR = 0.0792. The analytical results show that the Cd+2 has two kinds of coordinate bonds in one crystal. One Cd+2 coordinates with 4 NTO anions and another coordinates with 6 water molecules to form a binucleate complex with a structure of tetrahedron and tetragonal bipyramid, respectively. By using SCF-PM3-MO method, the electron structure of cadmium complex of NTO has been calculated. The analysis of the calculated results shows that when [Cd(NTO)4Cd(H2O)6] • 4H2O is heated, the crystallization waters will be dissociated first and the ligand waters second and NO2 group has priority of leaving when NTO is decomposed. Analysis of the energy level and composition of localized molecular orbitals indicates that both the two Cd2+ bond to the coordinating atom with 5s  相似文献   

12.
A novel binuclear Cobalt(II) complex with N-(2-propionic acid)-salicyloyl hydrazone (C10H10N2O4, H3L) was prepared and characterized. The crystal structure of [Co(C10H9N2O4)2] · 3H2O was determined by X-ray single-crystal diffractometry. The Co2+ ion is six-coordinated by the carboxyl and acyl O atoms and azomethine N atoms of two tridentate N-(2-propionicacid)-salicyloyl hydrazone ligands, which form two stable five-numbered rings sharing one side in the keto form. The coordination environment around the Co2+ ion might be described as a distorted octahedron. Abundant hydrogen bonds of the types O-H…N and O-H…O between the water molecules and ligands not only form the three-dimensional network, but also provide an extrastability for the crystal. The complex was studied for the interaction with calf thymus DNA by electronic absorption titration and emission titration. The results show that the complex is bound to calf thymus DNA mainly by intercalation. The article is published in the original.  相似文献   

13.
A new Co(III) complex of 1,2-cyclohexanedionedioxime and thiocarbamide with an SO 4 2? anion and solvation water molecules in the outer sphere has been synthesized and its structure has been defined. Orthorhombic crystals, a = 11.659(2) Å, b = 26.448(5) Å, c = 30.142(6) Å, V = 9295(3) Å 3, Z = 8, dcalc = 1.599 g/cm3, space group Pbca; final R index is 0.0578 for 8221 reflections with I > 2σ(I). In the octahedral Co(III) complex, two 1,2-cyclohexanedionedioxime residues lie in the equatorial plane, while two thiocarbamide molecules are in the axial plane. Intramolecular bonds: N-H…O and O-H…O type hydrogen bonds and π-π interactions that stabilize the complex cations. In crystal, the components are linked by N-H…O and O-H…O hydrogen bonds into a 3D framework.  相似文献   

14.
The dependence of solid phase composition on the main parameters of the interaction in the CoSO4-K4P2O7-H2O system was studied. The synthesis conditions were determined and a crystalline cobalt(II) diphosphat of the composition Co2P2O7 · 6H2O was synthesized. Its thermal properties were studied. The composition and the intervals, wherein the thermally stable products of partial and complete dehydration of Co2P2O7 · 6H2O are formed, were specified. The final heat treatment product, anhydrous α-Co2P2O7, was identified and a sequence of the solid phase thermal transformations accompanying its formation was established.  相似文献   

15.
A novel lanthanide complex of [Nd(2-EOBA)3(phen)(H2O)]2 · H2O (2-EOBA = 2-ethoxylbenzoate, phen = 1,10-phenanthroline), has been synthesized and structurally characterized by single crystal X-ray diffraction. The complex crystallizes in monoclinic, space group P2(1)/n with a = 14.7453(18) Å, b = 12.3628(15) Å, c = 19.473(2) Å, α = 90°, β = 93.349(2)°, γ = 90°. Two Nd3+ ions are connected together by two bridging 2-EOBA ligands and each Nd3+ ion is further coordinated by two chelating 2-EOBA ligands, one chelating phen molecule and one water molecule. The coordination number of Nd3+ ion is nine. The coordination geometry of Nd3+ ion is a distorted monocapped square-antiprism.  相似文献   

16.
We succeeded in synthesizing a new high-spin complex [Fe2(CN)12Ni3(L)6]·27H2O, where L is stable nitroxide 2-(imidazol-4-yl)-4,4,5,5-tetramethyl-2-imidazoline-3-oxide-1-oxyl. According to X-ray diffraction data, the metal core of the pentanuclear [Fe2(CN)12Ni3(L)6] molecule is a trigonal bipyramid with Fe atoms occupying the axial positions and linked via CN bridges to {NiL2} fragments laying in the equatorial plane. A peculiarity of this coordination compound is a large number of water molecules per the [Fe2(CN)12Ni3(L)6] pentanuclear molecule in the structure. The complex character of the μeff(T) dependence points to many competing channels of exchange interactions between the three types of paramagnetic centers.  相似文献   

17.
The crystal structure of the complex (N2H5)[Ni(NH2NHCOO)3] · H2O (I) was refined using X-ray diffraction data (obtained on an Apex X8 diffractometer, MoK α radiation, 1830 F hkl , R = 0.0182). The structure is built of complex anions [Ni(NH2NHCOO)3], cations N2H5+, and water molecules and is characterized by strong hydrogen bonds N-H…O, O-H…O, and N-H…N. The N3O3 coordination polyhedron around a Ni atom is a slightly distorted octahedron. The thermal decomposition of complex I was studied in high-boiling organic liquids. The feasibility of preparing non-pyrophoric nickel powders having particle sizes of up to 20 nm is shown.  相似文献   

18.
The reaction of the trinuclear oxo-centered mixed-valence complex [Mn3O(O2CPh)6(Py)2(H2O)] with 2,2′-bipyridyl (Bipy) and another potential tripodal ligand affords the title compound [Mn3(PhCO2)6(Bipy)2] · H2O in good yield. The X-ray crystallographic diffraction study reveals that three mangenese ions are arranged in a linear mode with Mncenter-Mnterminal and Mnterminal-Mnterminal diatances of 3.588 and 7.176 Å, respectively. Molar magnetic susceptibility of the compound gradually decreases from 12.23 (300 K) to 4.45 cm3 K mol?1 (2 K). Taking into account the structure of this compound, the data in the 2.0–300 K range were fit to the appropriate theoretical expression to give J = ?2.73 cm?1, ρ = 2.07%, N a = ?0.0004 cm3 mol?1, g = 1.992, and R 2 = 0.99996. The magnetization versus external magnetic field measurements at 2 K shows that the ground state is S T = 5/2.  相似文献   

19.
Nanocrystalline NH4ZrH(PO4)2·H2O was synthesized by solid-state reaction at low heat using ZrOCl2·8H2O and (NH4)2HPO4 as raw materials. X-ray powder diffraction analysis showed that NH4ZrH(PO4)2·H2O was a layered compound with an interlayer distance of 1.148 nm. The thermal decomposition of NH4ZrH(PO4)2·H2O experienced four steps, which involves the dehydration of the crystal water molecule, deamination, intramolecular dehydration of the protonated phosphate groups, and the formation of orthorhombic ZrP2O7. In the DTA curve, the three endothermic peaks and an exothermic peak, respectively, corresponding to the first three steps' mass losses of NH4ZrH(PO4)2·H2O and crystallization of ZrP2O7 were observed. Based on Flynn–Wall–Ozawa equation and Kissinger equation, the average values of the activation energies associated with the NH4ZrH(PO4)2·H2O thermal decomposition and crystallization of ZrP2O7 were determined to be 56.720 ± 13.1, 106.55 ± 6.28, 129.25 ± 4.32, and 521.90 kJ mol−1, respectively. Dehydration of the crystal water of NH4ZrH(PO4)2·H2O could be due to multi-step reaction mechanisms: deamination of NH4ZrH(PO4)2 and intramolecular dehydration of the protonated phosphate groups from Zr(HPO4)2 are simple reaction mechanisms.  相似文献   

20.
Synthesis and investigation of a binary complex salt [Cr(NH3)5Cl][PdCl4]·H2O is reported. The compound is isostructural with [Rh(NH3)5Cl][PdCl4]·H2O studied earlier; it was characterized by element analysis and powder and single crystal X-ray diffraction. Crystal data for H17Cl5N5OPdCr: a = 7.8668(12) Å, b = 10.9703(16) Å, c = 16.048(2) Å, = 102.469(3)°, space group P21/c, Z = 4, V = 1352.3(3)Å3, d calc = 2.155 g/cm3.Original Russian Text Copyright © 2004 by I. A. Baidina, P. E. Plyusnin, S. V. Korenev, K. V. Yusenko, Yu. V. Shubin, and S. A. GromilovTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 3, pp. 549–552, May–June 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号