首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last decade, hollow polyaniline nanostructures such as nanocapsules and nanotubes have attracted increasing attention due to their potential applications in electrical and optoelectronic nanodevices, sensors, supercapacitors, energy storage devices, and else where. Many strategies have been developed for their preparation, such as hard template methods with physical templates, soft template methods with chemical templates, and template-free methods. The present status and future directions of hollow Polyaniline nanostructures using these pathways are described in this review. Their properties and applications are also addressed. Finally, the review examines developing perspectives for the future application of nanostructures.  相似文献   

2.
ZnO nanoribbon/nanoneedle junction networks and faceted nanoneedle–microwhisker structures were grown for the first time by the evaporation of ZnS in the presence of oxygen under different reaction conditions. The nanoribbons/nanoneedles crossed each other in three specific directions to form network-like 2D junction structures and displayed a unique and perfect growth mode. For the faceted nanoneedle structure, the nanoneedle grew epitaxially on the (0002) plane of a ZnO microcrystal. These ZnO nanostructures might have potential applications in the development of nanoscale electronics and optics. PACS 61.46.+w; 81.07.Vb; 81.16.Be  相似文献   

3.
Nonlinear optical (NLO) responses of perovskite‐type nanostructures have a variety of potential applications owing to the highly efficient frequency conversion guaranteed by both the material itself and the nanometer‐scale configuration. KNbO3 (KN) nanoneedles have been identified as a promising NLO material because of the superior broadband frequency conversion efficiency, and if incident light is propagating in a direction perpendicular to the axis of a nanoneedle, then the phase‐matching constraint can be relaxed. Here, the second‐harmonic generation (SHG) and third‐harmonic generation (THG) responses of both individual and clustered KN nanoneedles are reported. Based on these results, a novel method is proposed for determining the optimal excitation wavelength for NLO imaging of several biological samples, with KN nanoneedles acting as NLO agents. The method is shown to provide the optical features in the focal plane and a more reliable estimation of the optimal excitation wavelength for deep‐tissue imaging.  相似文献   

4.
Nanosheet-based microspheres of ZnO with hierarchical structures, hollow prism, and coralline-like ZnO nanostructures were successfully prepared by ultrasonic irradiation in acidic ionic liquids (AILs). The hollow spherical is made up of many thin petals, the thickness of which is only about 90 nm. In the presence of AIL2, the one prepared at a frequency of 40 kHz is a mixture of nanofibers with diameters ranging from less than 30 nm to about 100 nm. ZnO nanostructure (with AIL1) reveals lozenge-shape hollow prism structures. The products were hollow prism structure covered with some nanometric-size nanoparticles. The average size of the nanoparticles is in the range of 40?C80 nm. It is found that the ultrasonic irradiation time, ultrasonic frequency, and the AILs influence the growth mechanism and optical properties of ZnO nanostructures. Producing Zno nanostructures by different traditional methods (e.g., hydrothermal method) requires basic media. These methods are not economical and environmentally friendly in many industrial processes. In so doing, a critical problem has been the point that, normally, a high concentration of base causes reactor metal corrosion. This is a simple and low-cost method, which can be expected to be applied in industry in the future. Also, importantly, the structures synthesized in this experiment can indicate a new way to construct nanodevices by self-organization in one step.  相似文献   

5.
整齐排列的氧化锌纳米针阵列的场发射性能   总被引:2,自引:0,他引:2       下载免费PDF全文
肖竞  柏鑫  张耿民 《物理学报》2008,57(11):7057-7062
采用简单的热蒸发方法,不使用任何催化剂,在硅基底上制备出了两种垂直于基底、整齐排列的氧化锌纳米针阵列.它们具有均匀的分布以及一致的取向和高度.场发射性能研究表明它们同时具有较低的开启和阈值场强,稳定的发射电流和长时间维持发射的能力.较低的开启和阈值场强来源于它们较高的长径比和较细的尖端;稳定发射电流和长时间维持发射的能力来源于它们在基底上均匀一致的分布以及由于较粗的根部带来的与基底的良好接触.实验结果表明整齐的氧化锌针状纳米结构阵列是一种理想的平面场发射材料. 关键词: 氧化锌 热蒸发 阵列场发射 屏蔽效应  相似文献   

6.
Three kinds of ZnO hierarchical structures, nanocombs with tube- and needle-shaped teeth and hierarchical nanorod arrays, were successfully synthesized through the chemical vapor deposition method. Combining the experimental parameters, the microcosmic growing conditions (growth temperature and supersaturation) along the flux was discussed at length, and, based on the conclusions, three reasonable growth processes were proposed. The results and discussions were beneficial to further realize the relation between the growing behavior of the nanomaterial and microcosmic conditions, and the hierarchical nanostructures obtained were also expected to have potential applications as functional blocks in future nanodevices. Furthermore, the study of photoluminescence further indicated that the physical properties were strongly dependent on the crystal structure.   相似文献   

7.
李荣金  李洪祥  胡文平  刘云圻 《物理》2006,35(6):476-486
文章简要回顾了功能聚合物的发现和发展历程,着重介绍了其在发光二极管、太阳能电池、场效应晶体管、传感器件、纳米材料与器件中的应用。  相似文献   

8.
Peter J.F. Harris 《哲学杂志》2013,93(18):2355-2363
The formation of novel structures by the passage of an electric current through graphite is described. These structures apparently consist of hollow three-dimensional graphitic shells bounded by curved and faceted planes, typically made up of two graphene layers. The curved structures were frequently decorated with nano-scale carbon particles, or short nanotubes. In some cases, nanotubes were found to be seamlessly connected to the thin shells, indicating that the formation of the shells and the nanotubes is intimately connected. Small nanotubes or nanoparticles were also sometimes found encapsulated inside the hollow structures, while fullerene-like particles were often seen attached to the outside surfaces. With their high surface areas and structural perfection, the new carbon structures may have applications as anodes of lithium ion batteries or as components of composite materials.  相似文献   

9.
Two-dimensional(2D) materials have become a hot study topic in recent years due to their outstanding electronic,optical, and thermal properties. The unique band structures of strong in-plane chemical bonds and weak out-of-plane van der Waals(vdW) interactions make 2D materials promising for nanodevices and various other applications. Raman spectroscopy is a powerful and non-destructive characterization tool to study the properties of 2D materials. In this work, we review the research on the characterization of 2D materials with Raman spectroscopy. In addition, we discuss the application of the Raman spectroscopy technique to semiconductors, superconductivity, photoelectricity, and thermoelectricity.  相似文献   

10.
The epitaxial growth of nanometer-scale structures on non-single crystalline surfaces is proposed and demonstrated. Hydrogenated amorphous silicon was deposited onto an SiO2 surface by plasma-enhanced chemical vapor deposition. Indium phosphide was deposited on the amorphous silicon by low-pressure metalorganic chemical vapor deposition in the presence of colloidal gold particles as catalysts. Under specific growth conditions, the indium phosphide formed nanoneedles connected to a microcrystalline silicon film nucleated within the amorphous silicon during the growth of the nanoneedles. Transmission electron microscopy revealed the presence of two different crystallographic structures: zinc-blende and wurtzite. Micro-photoluminescence measurements at room temperature showed two peaks with substantial blue-shifts with respect to that of bulk zinc-blende indium phosphide. PACS 81.16.Hc; 81.07.Vb; 68.65.La  相似文献   

11.
One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres   总被引:2,自引:0,他引:2  
Hierarchical hollow CuO submicrospheres have been fabricated on a large scale by a facile one-pot sonochemical process in the absence of surfactants and additives. The as-prepared products were investigated by XRD, FESEM, EDX, TEM, SAED, HRTEM and BET nitrogen adsorption-desorption isotherms. The results reveal that hollow pumpkin-shaped structures possess a monoclinic phase CuO with the diameters ranging from 400 to 500 nm, and their walls with around 45 nm in thickness are composed of numerous single crystalline CuO nanoribbons with a width of about 8 nm. The BET specific surface area of the as-synthesized CuO hollow structures was measured to be 59.60 m(2)/g, and the single point adsorption total pore volume was measured to be 0.1036 cm(3)/g. A possible growth mechanism for the formation of hierarchical hollow CuO structures was proposed, which is considered to be a sonohydrolysis - oriented aggregation - Ostwald ripening process. The novel hollow CuO spherical structures may utilize applications in biosensors, photonics, electronics, and catalysts.  相似文献   

12.
《Physics letters. A》2020,384(25):126483
The boron nitride (BN) nanosheet is an isostructural analog of graphene and can be viewed as the structure that C atoms in graphene are replaced with alternating B and N. The easily modulated band-gap of BN nanosheet by simply passivating its edge(s) makes it is promising for many potential applications in nanodevices and nanoelectronics. We further systematically theoretically study the magnetic and electronic properties of passivated-ZBNNR by nonmetallic atom(s), here. According to our calculations, all considered structures show magnetic feature, and the ZBNNRs can be metal or half-metal or semiconductor depending on the termination details. The great application-potential of the passivated-ZBNNRs is further confirmed based on our results.  相似文献   

13.
By first-principles calculations, we propose three heterojunction nanodevices based on zigzag silicene nanoribbons with different edge-hydrogenated topological line defects. The devices all present excellent spin-filtering properties with 100% spin polarization as well as remarkable rectifying effect (with rectification ratio around 102) and negative differential resistance behaviors. Our findings shed new light on the design of silicon-based nanodevices with intriguing spintronic applications.  相似文献   

14.
Zn2SnO4 (ZTO) nanowires with a unique dendritic nanostructure were synthesized via a simple one-step thermal evaporation and condensation process. The morphology and microstructure of the ZTO nanodendrite have been investigated by means of field emission scanning electron microscopy (SEM), x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). SEM observation revealed the formation of branched nanostructures and showed that each branch exhibited a unique periodic structure formed by a row of overlaid rhombohedra of ZTO nanocrystals along the axis of the nanobranch. HRTEM studies displayed that the branches grew homoepitaxially as single-crystalline nanowires from the ZTO nanowire backbone. A possible growth model of the branched ZTO nanowires is discussed. To successfully prepare branched structures would provide an opportunity for both fundamental research and practical applications, such as three-dimensional nanoelectronics, and opto-electronic nanodevices.  相似文献   

15.
We have developed a straightforward and simple strategy for large-scale growth of well-aligned ZnO nanoneedles via a thermal evaporation method. XRD and SAED patterns of nanoneedles can be indexed to hexagonal ZnO with wurtzite structure. Room temperature photoluminescence analysis showed a strong ultra violet emission at 365 nm and a broad deep level visible emission at 472 nm. The growth mechanism of the nanoneedles has been investigated by SEM and the lower pressure of both evaporated zinc and oxygen flux would favor the nucleation of the finer nanowires from those previously formed high coverage spots. The field emission current density of ZnO nanoneedles sharply reached ~0.048 mA/cm2 at a field of 3.1 V/m.  相似文献   

16.
解思深 《物理》2001,30(5):306-309
文章讨论了纳米器件发展方向和近期的研究成果,指出是子效应和纳米结构是将来的纳米器件的两大基础,以碳纳米管和各种电极组成的纳米结构为代表,论述了不同的量子效应及其在纳米器件中的可能应用。  相似文献   

17.
Formation of colloidal hollow structures in NaYF4 nanocrystals (NCs) with and without lanthanide ion doping has been observed and investigated via the co-thermolysis of a mixture of trifluoroacetate precursors in trioctylphosphine oxide. The Kirkendall effect in this one-step reaction is driven by the monomer diffusion and crystal phase transition. It is found that three kinetic stages which include rapid precipitation of cubic phase NCs, cubic to hexagonal phase transition concurrent with an inward transport of NaF species, and vacancy diffusion are attributed to the hollow structure formation. X-ray energy dispersive spectroscopy (XEDS) point analysis is applied to examine the ions distribution and crystalline components in the lanthanides (Yb and Er)-doped NaYF4 up-conversion nanophosphors (UCNPs). The hollow structures increase the surface-to-volume of a single NC and thus have a significant effect on the photoluminescence of the lanthanide-doped NPs and provide synthetic applications for achieving novel NaYF4-based NCs.  相似文献   

18.
Vertical ZnO nanoneedles with sharp tips are secondarily grown on tips of primarily grown ZnO micropyramids by a vapour transport process. The field emission (FE) properties exhibit a lower turn-on electric field and a higher field enhancement factor as compared with vertical ZnO microrods. This result indicates that ZnO nanoneedles have good optimum shapes for FE due to electron accumulation at sharp tips.  相似文献   

19.
Two simple methods, the thermal evaporation method and solution method, were developed to synthesize a variety of SiC nanoarchitectures. SiC nanowires, nanopyramids, and nanobones were obtained by the thermal evaporation method, while nanokelps, nanoflowers and nanocombs were achieved in the solution route. X-ray diffraction (XRD) analyses demonstrate that these SiC nanoarchitectures all have a face-centered cubic structure. The variety of the SiC nanoarchitectures is recognized caused by using different carbon and silicon sources with and without nucleation initiators, e.g., ZnS and Zn/SiO2 in the thermal evaporation method, and different growth manners in the solution method. The vapor–solid (VS) and vapor–liquid–solid (VLS) reaction mechanisms are proposed for the formation of these different morphologies and structures of the SiC nanoarchitectures. The study on the nanoarchitectures may be helpful in the further research towards controllable formation of nanostructures and in finding potential applications for nanodevices. PACS 42.70.Nq; 68.37.-d; 78.67.Bf; 81.07.Vb; 81.15.Gh  相似文献   

20.
Density functional theory has been used to study the electronic and magnetic properties as well as the stability on the hydrogenated BC2N sheets. It is found that two different structures (BC2NH-I and BC2NH-II) with the ferromagnetic ground states can be formed when removing the H atoms from one side of semi-hydrogenated BC2N sheet. By applying tensile strain, both of their magnetisms are robust to 2.0 μB. However, the magnetisms are sensitively changed by compressive strain larger than ?6%. The BC2NH-I system can be transitioned from semiconductor to half-metal and then to metal when the compressive strain is changed from ?6% to ?8%. And the BC2NH-II system can be changed into half-metal by applying the compressive strain between ?6% and ?7.5%. Our calculation results suggest a possible way to tune the electronic and magnetic properties by choosing the appropriate structural type and the external strain, which would have potential applications in spintronics and nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号