首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We develop a new simulation method of colloidal suspensions, which we call a "fluid particle dynamics" (FPD) method. This FPD method, which treats a colloid as a fluid particle, removes the difficulties stemming from a solid-fluid boundary condition in the treatment of hydrodynamic interactions between the particles. The importance of interparticle hydrodynamic interactions in the aggregation process of colloidal particles is demonstrated as an example. This method can be applied to a wide range of problems in colloidal science.  相似文献   

2.
The effect of the presence of poly(vinyl pyrrolidone) (PVP) on the copper nanoparticle formation, obtained by UV irradiation of ethanol solution of Cu(acac)2 (acac = 2,4-pentanedionato), was investigated. At 254 nm, in conditions of light completely absorbed by complex, the PVP exhibited protective and stabilizing effects, as shown by the formation of a colloidal copper solution and by a block of the heterogeneous process, which leads to thin film formation on the quartz walls. The colloidal solution was tested for several months by plasmon position and it was found that it remained unaltered in inert atmosphere, but returned to the starting complex on contact with air. The PVP ability to control the particle size was investigated by carrying out photoreduction sensitized by Hacac at 254 and 300 nm, in the presence of PVP concentration varying from 0 to 0.2 M. In this range it was possible to obtain copper nanoparticles of dimensions decreasing from 30 to 4 nm. Besides this, the PVP (0.005–0.05 M) role as sensitizer was investigated by irradiating solutions of Cu(acac)2 at 300 nm which is an inactive wavelength for copper reduction by direct light absorption. It was found that the PVP was an efficient sensitizer of the copper photoreduction. The nanoparticles were characterized by plasmon band, Trasmission Electron Microscope (TEM) as well as Dynamic Light Scattering (DSL) analysis. The overall results evidence the advantages of the PVP use in the nanoparticle copper formation through the photochemical technique such as the exclusive formation of colloidal copper, their size control, stable colloidal solution and complete return to the starting complex.  相似文献   

3.
We report on the observation of the development of superconductivity through interparticle interactions in 3, 5, 7, and 23 nm ferrimagnetic-like Sn nanoparticle assemblies. The Sn nanoparticles are fabricated using the gas condensation method. Each sample consists of a macroscopic amount of individual Sn nanoparticles without a capping molecule. Ferrimagnetism is found but no sign of superconductivity can be detected when the 3 nm particles are very loosely assembled. A reduction in the mean particle moment results when the packing fraction of the assembly is increased. Superconductivity occurs when a critical packing fraction is reached. Beyond this, the superconducting transition temperature T C continues to increase and noticeably exceeds that of the bulk T C. The enhancement of superconductivity by interparticle interactions has also been observed in 5, 7, and 23 nm particle assemblies, with the effect becoming less significant in larger particles. We attribute these observations to the transfer of electrons between the surface and the core regions of the nanoparticles triggered by finite size effects and interparticle interactions.  相似文献   

4.
Silicon nanoparticles were generated by femtosecond laser [387 nm, 180 fs, 1 kHz, pulse energy = 3.5 μJ (fluence = 0.8 J/cm2)] ablation of silicon in deionized water. Nanoparticles with diameters from ~5 up to ~200 nm were observed to be formed in the colloidal solution. Their size distribution follows log-normal function with statistical median diameter of ≈20 nm. Longer ablation time leads to a narrowing of the nanoparticle size distribution due to the interaction of the ablating laser beam with the produced nanoparticles. Raman spectroscopy measurements confirm that the nanoparticles exhibit phonon quantum confinement effects and indicate that under the present conditions of ablation they are partially amorphous.  相似文献   

5.
A solution containing ssDNA was detected by using colloidal gold nanoparticles upon a color change of solution. First of all, we prepared colloidal gold nanoparticles with a size of less than 20 nm by means of citrate reduction of HAuCl4. Since colloidal gold nanoparticles modified with citrate anions have a negative charge, they are very well dispersed in the solution due to the negative charge repulsion, showing red color. If the electrostatic repulsion is screened by additives such as NaCl, the nanoparticles start to aggregate, leading to a color alteration. We found that the color alteration is retarded when the solution contains ssDNA, which plays a role in preventing the nanoparticles from aggregation. This allows the determination of whether or not ssDNA is present in a solution. However, the color alteration is not retarded when the solution contains dsDNA.  相似文献   

6.
Iron oxide nanoparticles of 8–20 nm in size were investigated as an assembly with biomolecules synthesized in an aqueous solution. The magnetic behavior of the biomolecule–nanoparticles assembly depends sensitively on the morphology and hence the distribution of the nanoparticles, where the dipole coupling between the nanoparticles governs the overall magnetic behavior. In assemblies of iron oxide nanoparticles with trypsin, we observe a formation of unusual self-alignment of nanoparticles within trypsin molecules. In such an assembly structure, the magnetic particles tend to exhibit a lower spin-glass transition temperature than as-synthesized bare iron oxide nanoparticles probably due to reduced interparticle couplings within the molecular matrix. The observed self-alignment of nanoparticles in biomolecules may be a useful approach for directed nanoparticles assembly.  相似文献   

7.
A facile surface coating of aluminum (Al) nanoparticles with various dispersants by using a wet ball milling method is reported. Various mixtures of Al nanoparticles (d = 30–130 nm) and dispersants in solvent were ball milled. The excellent surface coating was observed with coating thickness ranging from 10 to 13 nm. The resulting good colloidal stability confirmed by both visual inspection of colloidal precipitation and Turbiscan backscattering was attributed to a stable dispersant organic layer formed on Al nanoparticle surfaces after ball milling as observed in HRTEM images. This method can be extended to the synthesis of a variety of any other metallic nano-colloidal solutions.  相似文献   

8.
The assembly of magnetic cores into regular structures may notably influence the properties displayed by a magnetic colloid. Here, key synthesis parameters driving the self‐assembly process capable of organizing colloidal magnetic cores into highly regular and reproducible multi‐core nanoparticles are determined. In addition, a self‐consistent picture that explains the collective magnetic properties exhibited by these complex assemblies is achieved through structural, colloidal, and magnetic means. For this purpose, different strategies to obtain flower‐shaped iron oxide assemblies in the size range 25–100 nm are examined. The routes are based on the partial oxidation of Fe(OH)2, polyol‐mediated synthesis or the reduction of iron acetylacetonate. The nanoparticles are functionalized either with dextran, citric acid, or alternatively embedded in polystyrene and their long‐term stability is assessed. The core size is measured, calculated, and modeled using both structural and magnetic means, while the Debye model and multi‐core extended model are used to study interparticle interactions. This is the first step toward standardized protocols of synthesis and characterization of flower‐shaped nanoparticles.  相似文献   

9.
Pt nanoparticles supported on Vulcan XC-72R, synthesized by a surfactant-stabilized colloidal method, exhibited excellent properties as anode catalyst for low-temperature fuel cell. The Pt/C catalyst prepared with binary-surfactant (Brij 35 + Tween 20) at 10 times CMC had an average particle size of 2.8 nm with quite a narrow distribution between 2 and 4 nm. Our preparation method resulted in complete reduction of Pt and full loading of Pt nanoparticles on the carbon. The home-made Pt/C catalyst showed higher EAS and better catalytic activity than a commercial Pt/C catalyst. The method used in this study provided an easy and reproducible procedure for the preparation of Pt nanoparticles supported on carbon.  相似文献   

10.
Non-uniform electric fields are utilized to direct the large scale assembly of colloidal nanoparticles in nanoscale structures over large areas. Using micro- and nanoscale templates, various nanoparticles can be directly assembled into parallel wires, cross-wires, and many other complex structures. The assembly process is controlled by electric field, time, and geometric design of templates. The results show that single nanoparticle wires as small as 10 nm wide and 100,000 nm long as well as other nanoparticle structures can be fabricated using electrophoresis over a large area. In addition, the directed assembly of polymeric and conductive nanoparticle nanowires and networks has been demonstrated using dielectrophoresis. The nanoparticle wires can be further oriented along the direction of an externally introduced hydrodynamic flow. The presented technique is a promising approach for large scale manufacturing of nanoscale devices for many applications including biosensors and nanoelectronics.  相似文献   

11.
This article describes a new technique for fabricating an electrocatalyst model in which the particle size and interparticle distance are controlled independently. We designed a uniform insulating polymer layer as a mask on an electroconductive glassy carbon substrate and then peeled off a part of the layer in nano-sized dots by scratching the overcoat layer using an atomic force microscope (AFM) cantilever. Pt particles electrodeposited only on the peeled off area of the glassy carbon. To peel-off a small area on the glassy carbon, a 29 ± 2 nm thick insulating polymer overcoat layer and a cantilever operating area of 10 nm × 10 nm were used, and the smallest peel-off area obtained was 30 nm × 30 nm. Thereafter, we performed the peel-off procedure on the polymer overcoat layer of the glassy carbon substrate having a cantilever operating area of 80 nm × 80 nm. Pt deposition of 100–150 nm in diameter was successfully achieved by adjusting the interparticle distance.  相似文献   

12.
Ni nanoparticles (~32 nm particle diameter) have been synthesized on the walls of microporous (~1 nm pore diameter) silica spheres (~2.6 μm sphere diameter) and characterised magnetically to potentially produce a new class of core (silica micro-spheres)-shell (nanometallic)-type nanocomposite material. These magnetic nanocomposite materials display a characteristic increase in coercivity with reducing temperature. The average particle size has been used to calculate the anisotropy constant for the system, K. The discussion postulates the potential mechanisms contributing to the difference between the calculated K value and the magnetocrystalline anisotropy constant of bulk Ni. Various factors such as surface anisotropy and interparticle interactions are discussed as possible contributing factors to the anisotropy values calculated in the paper.  相似文献   

13.
Magnetic properties, arising from surface exchange and interparticle interactions of the Fe3O4 (magnetite) nanoparticles, were investigated in the temperature range of 5–300 and 120–300 K using vibrating sample magnetometer technique and electron spin resonance spectroscopy, respectively. The research was based on to figure out the origin of intraparticle interactions and the change of interparticle interactions in wide size range Fe3O4 nanoparticles. The analyses were done for samples having almost same particle size distributions. The average particle sizes were changed in between 30 ± 2 and 34 ± 2 nm. The observed magnetization values were demonstrated the mixture of single-domain size particles, exhibiting both single-domain (SD) and superparamagnetic (SPM) states. The symmetry of resonance curves changed according to the ratio of SD and SPM-stated particles in mixture under located temperature. The changes of anisotropy up to domain state were understood by freezing magnetic moment in glycerol matrix from room temperature to 120 K under 5-kG field. The shift of H R values to higher magnetic fields and the more symmetric resonance spectrum proved the effect of anisotropy and interparticle interactions fields on magnetic behave. In addition, the origin of intra-interaction was exposed from Fe3+ centers and exchange coupling in between Fe2+, Fe3+, and O, and Fe3+ centers found from g factor (g).  相似文献   

14.
One of the most widely used methods for surface‐enhanced Raman scattering (SERS) employs silver or gold nanoparticles either in colloidal suspension or in the dry‐drop form. In such substrates the SERS amplification factors depend critically on the interparticle distances. Here, we report that microwave absorption as a function of temperature in dry‐drop substrates can be used as a probe to demarcate temperature regions for thermal annealing to produce SERS substrates with very high amplification factors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Nickel nanoparticles with an average diameter of 90 nm have been dispersed in de-ionized water with addition of pyrogallol-poly(ethylene glycol) polymers, hereafter termed Gallol-PEG, of different molecular weights as a surfactant. Measurement of zeta potential, infrared spectrum, and adsorption isotherm confirms the preferential anchoring from polar end of the surfactant molecules on the particle surface, forming a Langmuir-typed adsorption layer (adlayer) to provide an electrosteric stabilization. Concentrated nanoparticle suspensions with a solids loading up to 40 vol.% and an apparent viscosity lower than 10 Pa s at a shear rate of 100 s−1 have been obtained, indicating that the Gallol-PEG adsorption is effective in facilitating the suspension flow under stress. The suspensions are yet fractal in structure with an experimentally determined fractal dimension of 2.1, revealing that a reaction-limited cluster–cluster aggregation is operative. This weakly coagulated fractal structure stems primarily from the shallow interparticle attraction operative over a moderate interparticle separation (~5–10 nm), and is prone to the adlayer thickness and the molecular conformation of the surfactant.  相似文献   

16.
Here, the structuring of surfaces with gold nanoparticles by using Bessel‐like beam array is demonstrated. The experimental results show that the fabricated microring structures containing gold nanoparticles have a surface plasmon resonance in the spectral range of 520–540 nm, which can be tuned by selecting the laser treatment parameters. Fabricated microring structures exhibit a lower light transmittance comparing with the randomly distributed gold nanoparticles for wavelengths 500–570 nm due to the growth in the size of nanoparticles. In the spectral range of 600–700 nm, the light transmittance through microring structures is higher compared with the randomly distributed gold nanoparticles because of the removal of gold nanoparticles as gold has high reflectivity for wavelengths longer than 600 nm. The demonstrated method enables an easy fabrication of microring structures having tunable plasmonic properties.  相似文献   

17.
The effect of molar ratio of two hydrated iron salts used as precursors into a (co)precipitation-based synthesis method, on the composition, size and specific saturation magnetization of mixed iron oxides and oxyhydroxides magnetic nanoparticles as reaction products, was studied. The preparation procedure is based on a salt-assisted solid-state chemical reaction. The obtained products are magnetic multiphase components with the mean size ranging from 3 to 10 nm and specific saturation magnetization between 25 and 95.5 emu/g. The specific saturation magnetization modifies in a non-linear manner as the molar ratio of the iron salts varies. Excepting one sample, for which Fe2+/Fe3+ molar ratio was zero, all magnetic nanoparticles show a ferrofluid-like behaviour in the colloidal form. The small size, ferrofluid-like behaviour, and controlled specific saturation magnetization allow the use of new synthesized nanoparticles in specific biomedical or industrial applications.  相似文献   

18.
Biomedical applications of magnetic nanoparticles depend critically on their preparation as aqueous colloidal suspensions, or ferrofluids, with long term stability under physiological conditions. Dispersion of the magnetic nanoparticles is generally achieved by the use of protein cages, polysaccharide, polypeptide and charged macromolecular coatings, which minimize interparticle magnetic interactions, particle agglomeration and precipitation. The synthesis and characterization of gummic-acid stabilized maghemite ferrofluids is reported. X-ray diffraction, transmission electron microscope and dynamic light scattering measurements give a γ-Fe2O3 magnetic core diameter of 8 nm and a nanocomposite particle hydrodynamic diameter of 50 nm. Mössbauer and magnetization measurements indicate the presence of isolated, sterically stabilized superparamagnetic nanoparticles resistant to aging, and thus, promising agents for the production of novel magneto-pharmaceuticals.  相似文献   

19.
TiO2 colloidal nanoparticles and nanocrystals are prepared by hydrolysis of titanium isopropoxide employing a surfactant-free synthetic hydrothermal method. The synthesized samples are characterized by X-ray diffraction (XRD), HRTEM and FTIR. The XRD study confirms that the size of the colloidal nanoparticle is around 4?nm which the HRTEM analysis indicates the sizes of the colloidal nanoparticles are in the range of 2.5?nm. The fluorescence property of the TiO2 colloidal nanoparticles studied by the emission spectrum confirms the presence of defect levels caused by the oxygen vacancies. We have observed new emission bands at 387?nm,421?nm, 485?nm, 530?nm and 574?nm wavelengths, first one (387?nm) being emission due to annihilation of excitons while remaining four could be arising from surface states. The emission spectrum of annealed nanocrystallites is also having these four band emissions. It is observed that the surface state emission basically consists of two categories of emission.  相似文献   

20.
In this study, surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) characteristics of gold nanoaggregates with different morphologies are examined to elucidate the correlation between SPR and SERS of the object. Nanoaggregates, defined as random aggregates (hereafter RA), elongated aggregates (hereafter EA) and two-dimensional layered aggregates (hereafter 2DLA) are fabricated by immobilizing colloidal gold nanoparticles on glass substrates. The color variation observed in the RA and EA samples indicates the variation in localized SPR excitations excited on the samples. The RA sample mostly shows a broadened and shifted SPR peak centered at 570 nm in addition to another peak in the longer wavelength region (∼700 nm), whereas in the EA sample a weak blue-shifted peak is observed near 450 nm in addition to a broadened peak centered at 570 nm covering a trail for another one near 700 nm. In the case of the 2DLA sample, more than one SPR peaks are observed in the longer wavelength region. The SERS observation confirms million times higher enhancement at least in Raman intensity using the gold nanoaggregates adsorbed by dye molecules. The EA sample of gold nanoparticles shows ∼5 times higher enhancement in Raman signal compared to that of the RA and 2DLA sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号