首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subject of the study was investigation of impact of extracts from sunflower and mustard leaves on growth of mustard seedlings. Seeds of mustard were germinated on water and then grew on aqueous extracts from sunflower or mustard leaves. The specific thermal power during seedlings growth was measured by isothermal calorimetry. Changes in the chemical composition stimulated by extracts were measured by FT-Raman spectroscopy and analyzed with the support of the cluster analysis. The heat production rate during growth of seedlings was related to the type of extracts. Crude sunflower and mustard extracts strongly inhibited the growth of seedlings when compared to non-treated control. FT-Raman spectroscopy confirms that allelopathic compounds have the greatest influence on the metabolism of fatty acids of mustard cotyledons. The obtained results indicate that sunflower and mustard extracts have varied impact on growth and heat production rate of mustard seedlings.  相似文献   

2.
The effect of the CHCl3 and MeOH extracts from aerial parts from the Northwestern Argentina endemic species Ixorhea tschudiana Fenzl. on germination of the dicot tomato and the monoct onion and on soil microbial activity was studied by calorimetric and calorespirometric experiments. The CHCl3 extract inhibited seedling growth of tomato which increased with increasing concentrations. Seeds imbibed with 250 mg dm?3 extract germinated 24 h later than control and those imbibed with 100 and 500 mg dm?3 extract. This was reflected in the calculated low specific seedling growth rate (pSGΔHB) as determined from calorespirometric experiments. On the other hand, seedlings obtained in 500 mg dm?3 extract showed shorter and thicker hairy roots than control with significantly higher pSGΔHB. Probably, the extract induces inhibition of water uptake by seedling roots. Germination was reduced 50% in onion seeds imbibed with 500 mg dm?3 CHCl3 extract which apparently is due to higher rate of imbibition during the first stages as determined for calorimetry. On the other hand, 83 and 250 mg kg?1 of the MeOH and CHCl3 extract seem to selectively inhibit the growth of certain microorganisms and to enhance the activity of soil actinomycetes. Two actinobacteria were isolated from soil treated with these concentrations of both extracts: Kocuria sp. and Kocuria rosea; this latter species is known as a keratinolytic agent and seems to degrade complex carbon compounds of the soil and those incorporated by the MeOH extract. Both Kocuria specie seem to be beneficial for the soil converting substrate into biomass and thus I. tschudiana could be used as a soil phytoremediator.  相似文献   

3.
This letter presents strong novel evidence for the semi-permeable membrane surrounding Portland cement during the induction period. In the cement hydration, heat curve obtained through high-resolution differential scanning calorimetry under isothermal conditions, one main and some other smaller endothermic peaks were detected. These endothermic peaks are believed to be caused by the osmotic expansion that occurs after the semi-permeable membrane forms, not the precipitation of calcium hydroxide or the imbibition of water during the induction period.  相似文献   

4.
The conversion of either the gel or the liquid crystal phase to the most stable subgel phase in dimyristoylphosphatidylethanolamine (DMPE)-water system at a water content of 25 mass% was studied by differential scanning calorimetry and isothermal calorimetry. The calorimetric experiments were performed for two samples depending on whether the thermal treatment of cooling to -60°C was adopted or not. In DSC of varying heating rate, exothermic peaks due to the partial conversion were observed at either temperatures just below the gel-to-liquid crystal phase transition at 50°C or temperatures where the liquid crystal phase is present as a metastable state. The enthalpies of conversion for both the gel and the liquid crystal phase were measured directly by the isothermal calorimetries at 47 and 53°C, respectively, where the exothermic peaks were observed by DSC and were compared with the enthalpy difference between the gel and subgel phases and that between the liquid crystal and subgel phases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Binding of the phenothaizinium dye thionine with four sequence specific deoxyribopolynucleotides, poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), poly(dA-dT).poly(dA-dT), and poly(dA).poly(dT) has been investigated by means of thermal helix melting, isothermal titration calorimetry, and differential scanning calorimetry experiments. The binding affinity values evaluated from isothermal titration calorimetry suggests that thionine exhibits the highest binding affinity to poly(dG-dC).poly(dG-dC). The binding to poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), and poly(dG).poly(dC) is exothermic and favoured by negative enthalpy changes while binding to poly(dA).poly(dT) is endothermic and anomalous. The values of heat capacity changes of the interaction are negative and in the range (?0.4 to ?0.5) kJ · K?1 · mol?1. The binding is characterized by strong stabilization of the polynucleotides against thermal strand separation. The binding affinity values derived from thermal melting data are in excellent agreement with those obtained from isothermal titration calorimetry data. Insights into the energetic aspects and guanine–cytosine selectivity of the DNA interaction of thionine have been obtained from these studies.  相似文献   

6.
Purpose of studyOtostegia limbata (Benth.) Boiss. (Family: Lamiacae) is an important underexplored ethnomedicinal plant that has been used as antinflammatory, anticancer and antibacterial herbal remedy previously. The present work was aimed to evaluate the antioxidant, antimicrobial, antileishmanial, and anticancer prospective of O. limbata stem and leaf extracts.ResultsThe highest amount of phenolic and flavonoid content was obtained in the methanol-acetone and methanol stem extracts i.e., 53.29 ± 1.33 and 28.64 ± 1.16, respectively with highest DPPH scavenging in MeH stem extract (IC50 = 34.5 ± 1.34 μg/ml). Significant amount of catechin, gallic acid, apigenin and rutin was quantified. A moderate antibacterial and substantial antifungal activity was observed. Cytotoxicity against brine shrimps categorized 21% of stem (3 out of 14 extracts) and 57% (8 out of 14 extracts) of leaf extracts as potent. Substantial cytotoxicity against THP-1 cell line (IC50 = 3.46 ± 0.25 μg/ml) and Leishmania (IC50 = 1.50 ± 0.23 μg/ml) was exhibited by methanol-distilled water leaf extract while noteworthy antiproliferative activity against Hep-G2 (IC50 = 0.44 ± 0.45 μg/ml) was manifested by n-hexane stem extract. Absence of hemolysis in normal RBCs signified plant’s selective cytotoxicity. Methanol-distilled water and chloroform stem extracts displayed prominent protein kinase inhibition and antidiabetic potential of plant.ConclusionThe results of present study recommend O. limbata as a potential source of antifungal, antileishmanial, anticancer, and α-amylase inhibitory agents.  相似文献   

7.
The extracts from sunflower and mustard leaves were separated using SPE-Columns. The mustard seeds were germinated on water (24 h) and subsequently on crude extracts or separate fractions. The heat production rate was measured by isothermal calorimetry at 21°C and changes in seed cotyledons by FT-Raman spectroscopy. Crude extracts strongly inhibited seed germination. The water and ‘methanol’ fractions of mustard and sunflower extracts have a similar influence on the pattern of heat efflux. FT-Raman spectroscopy showed that extracts caused changes in cotyledons mainly in the content of fatty acids, carotenoids and flavonoids. Isothermal calorimetry and Raman spectroscopy are useful for the study of allelopathic interactions.  相似文献   

8.
After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 ∼ 1.2, probably reflecting one‐dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 53–60, 2000  相似文献   

9.

The thermal stability of HMT under dynamic, isothermal and adiabatic conditions was investigated using differential scanning calorimeter (DSC) and accelerating rate calorimeter (ARC), respectively. It is found from the dynamic DSC results that the exothermic decomposition reaction appears immediately after endothermic peak, a coupling phenomenon of heat absorption and generation, and the endothermic peak and exothermic peak were indentified at about 277–289 and 279–296 °C (Tpeak) with the heating rates 1, 2, 4 and 8 °C min−1. The ARC results reveal that the initial decomposition temperature of HMT is about 236.55 °C, and the total gas production in decomposition process is 6.9 mol kg−1. Based on the isothermal DSC and ARC data, some kinetic parameters have been determined using thermal safety software. The simulation results show that the exothermic decomposition process of HMT can be expressed by an autocatalytic reaction mechanism. There is also a good agreement between the kinetic model and kinetic parameters simulated based on the isothermal DSC and ARC data. Thermal hazards of HMT can be evaluated by carrying out thermal explosion simulations, which were based on kinetic models (Isothermal DSC and ARC) to predict several thermal hazard indicators, such as TD24, TD8, TCL, SADT, ET and CT so that we can optimize the conditions of transportation and storage for chemical, also minimizing industrial disasters.

  相似文献   

10.
Kinetics of the β→δ thermal phase transition in the polycrystalline mono- and polydispersed samples of 1,3,5,7-tetranitrooctahydro-1,3,5,7-tetrazocine (octogen, HMX) was studied by the isothermal calorimetry. Effects of different factors on the transition kinetics were investigated.  相似文献   

11.
Cholesterol constitutes the major component of most gallstones. It was identified and determined, in gallstones, issued from eleven patients, by thermal analysis: differential scanning calorimetry (DSC), with the use of the melting temperature and enthalpy, thermogravimetry (TG), with the mass loss of water. Anhydrous cholesterol (ChA) was characterized by two endothermic peaks (polymorphic, melting) and cholesterol monohydrate (ChH) by two endothermic peaks (dehydration, melting), too. Cha needle and Chh plate crystals were observed under polarizing light microscopy. The numerous stones obtained from nine patients were cholesterol stones: the ChA was higher 45 and lower 96%. ChH was present in stones of three patients. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.

Portland cement was partially replaced by metakaolin (MK), silica fume (SF) and ground granulated blast-furnace slag (BFS). Globally, two amounts of SF (5 and 10 mass%) and total substitution level of 35 mass% were used to prepare blended samples. Their early and 28 days hydration was studied by means of isothermal calorimetry and thermal analysis. Developed phase composition was assessed using compressive strength measurements. Acceleration of cement hydration in early times was proved and reflected higher amounts of finer additives. Despite dilution effect, the presence of more reactive SF and MK resulted in pozzolanic reactions manifesting already before 2 days of curing and contributing to the formation of strength possessing phases. The influence of BFS addition showed later and thanks to the synergic effect of all the used additives; it was possible to increase its content up to 25 mass% by keeping the compressive strength values near that of referential one.

  相似文献   

13.
The thermal decomposition of electrolytic manganese dioxide (EMD), in an inert atmosphere, and the effect of chemical reduction on EMD, using 2-propanol under reflux (82°C), was investigated by differential scanning calorimetry (DSC). This study is an extension of a study investigating the thermal decomposition of EMD and reduced EMD by TG-MS (J. Therm. Anal. Cal., 80 (2005)625)). The DSC characterisation was carried out up to 600°C encompassing the water loss region up to 390°C and the first thermal reduction step. Water removal was observed in two distinct endothermic peaks (which were not deconvolved in the TG-MS) associated with the removal of bound water. For the lower degrees of chemical reduction, thermal reduction resulted in the formation of Mn2O3; for higher degrees of chemical reduction, the thermal reduction resulted in Mn3O4 at 600°C. In the DSC the thermal reduction of the EMD and chemically reduced specimen was observed to be endothermic. The reduced specimens, however, also showed an exothermic structural reorganisation.  相似文献   

14.
当半晶聚对苯二甲酸乙二酯 (PET)的结晶度 (Xwc)处于一定范围内时 ,其物理老化后在差示扫描量热(DSC)曲线上的玻璃化转变区有吸热双峰出现 .通过对此吸热双峰分别与完全非晶试样和具有相当高Xwc 的半晶试样物理老化后在DSC曲线上出现的吸热单峰的比较 ,表明半晶PET中存在两种性质极为不同的非晶区 ,即自由非晶区和受限非晶区 .动态力学热分析 (DMTA)曲线上显示的损耗正切 (tanδ)双峰进一步证实了这两种不同非晶区的存在 .这两种不同非晶区的产生是由于试样中晶粒对非晶相中高分子链段活动性的不同限制作用所致 .研究发现 ,对于由冷结晶得到的半晶试样来说 ,出现两种不同非晶区所需的Xwc 上下限都随结晶温度 (Tc)的升高而增高 .还发现 ,在物理老化过程中 ,虽然非晶相的总量基本保持不变 ,但部分自由非晶区却逐渐转变为受限非晶区 .上述实验结果很好地符合Struik的“扩展玻璃化转变”模型 .  相似文献   

15.
ABSTRACT

The aim of this study was to provide the first from-start-to-end thin-layer chromatographic method of fingerprinting the Cistus incanus L. raw herbal material, with a purpose to further use it for rapid screening, authentication, and quality control of the traded C. incanus L. herbs. To this effect, 12 different C. incanus L. samples purchased as herbal teas from a local market were extracted by means of the accelerated solvent extraction (ASE) with chemometrically optimized solvent extraction mixture and temperature (methanol–water, 27:73, v/v; 130°C), to derive the polar fraction from the plant samples. Then, the extracts were developed in two thin-layer chromatographic systems, both using the commercially precoated silica gel 60 chromatographic plates, yet two different mobile phases (mobile phase 1, ethyl acetate–formic acid–acetic acid–water, 100:11:11:13, v/v/v/v, and mobile phase 2, ethyl acetate–dichloromethane–formic acid–acetic acid–water, 100:10:10:10:11, v/v/v/v/v). The chromatograms were densitometrically scanned in the reflectance mode at the wavelength λ?=?366?nm to obtain fingerprints of the extracts derived from individual C. incanus L. samples. Mobile phase 2 performed slightly better, because with its use, the maximum number of 11 peaks could be seen in the respective fingerprints, whereas with mobile phase 1, the maximum number of 10 peaks only. Then an antioxidant potential of the investigated herbal extracts was assessed, making use of mobile phase 2 and the 0.20% methanol solution of 2,2-diphenyl picrylhydrazyl as a visualizing reagent. The resulting chromatograms were densitometrically scanned in the extinction mode at the wavelength λ?=?550?nm to obtain biological fingerprints of the extracts. Finally, chromatographic and biological fingerprints underwent a semiquantitative evaluation in terms of the contents of the extracted polar fraction and an overall antioxidant potential of the individual plant species.  相似文献   

16.
The self-aggregation of the ionic tetrapeptide RWDW (R = arginine, W = tryptophan, D = aspartic acid) was studied at three temperatures (15, 25 and 35 °C) by different experimental techniques such as atomic force microscopy (AFM), isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). AFM was used to investigate the morphology of the aggregates; the AFM images at 15 °C showed the presence of a dense network of entangled fibres, while at 35 °C the peptide assembled into sparse globular and fibrillar structures. Moreover, the calorimetric experiments showed that in all cases the disaggregation process is endothermic and dependent on the investigated temperature. Both the enthalpy of disaggregation and the cac change with temperature. In particular, at 35 °C, we obtained the lower enthalpy of disaggregation and higher cac, showing that the disaggregation process is favoured at high temperature. The DSC scans strengthen the hypothesis that the RWDW aggregation is a rather complex phenomenon.  相似文献   

17.
In present study, we investigated hypoglycemic and antihyperglycemic potential of five extracts (water, ethanol, methanol, hexane, and chloroform) of four plants (i.e., seeds of Eugenia jambolana, fruits of Momordica charantia, leaves of Gymnema sylvestre, and seeds of Trigonella foenum graecum) alone and/or in combination with glimepiride in rats. Ethanol extract of E. jambolana, water extract of M. charantia, ethanol extract of G. sylvestre, and water extract of T. graecum exhibited highest hypoglycemic and antihyperglycemic activity (most active) in rats among all the extracts, while hexane extracts exhibited least activities. Most active extracts were further studied to dose-dependent (200, 100, and 50 mg/kg body weight (bw)) hypoglycemic and antihyperglycemic effects alone and in combination with glimepiride (20, 10, and 5 mg/kg bw). The combination of most active extracts (200 mg/kg bw) and lower dose of glimepiride (5 mg/kg bw) showed safer and potent hypoglycemic as well as antihyperglycemic activities without creating severe hypoglycemia in normal rats, while higher doses (200 mg/kg bw of most active extracts, and 10 and 20 mg/kg bw of glimepiride) were generated lethal hypoglycemia in normal rats. From this study, it may be concluded that the ethanol extract of E. jambolana seeds, water extract of M. charantia fruits, ethanol extract of G. sylvestre leaves, and water extract of T. graecum seeds have higher hypoglycemic and antihyperglycemic potential and may use as complementary medicine to treat the diabetic population by significantly reducing dose of standard drugs.  相似文献   

18.
The characterizations of the anhydrate (A-form), monohydrate (B1-form), and dihydrate (B2-form) of CS-834 were investigated by powder X-ray diffraction, differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA), infrared spectroscopy, and Karl Fischer moisture titration. The typical DSC curve of the B2-form showed five endothermic peaks at 35.0, 46.4, 56.2, 99.2, and 190.4 degrees C and an exothermic peak at 123.4 degrees C. In TG-DTA analysis, the three peaks at 35.0, 46.4, and 56.2 degrees C had a total weight loss of 7.3%, corresponding to the release of two water molecules. From morphological observation under thermomicroscopy, the endothermic peak at 99.2 degrees C was attributed to the melting of the dehydrous crystals (B0-form) and the exothermic peak at 123.4 degrees C to the recrystallization to the A-form crystals. The endothermic peak at 190.4 degrees C was due to the melting of the A-form crystals. After incubation for 6.0 h at 35, 50, 60, and 80 degrees C, the powder X-ray diffraction patterns of the B2-form indicated that it was converted into the A-form via the B1-form and B0-form. Thus CS-834 exists in homologous hydrous crystal forms in multiple-phase transformations with the dehydration of two water molecules.  相似文献   

19.
Syndiotactic 1,2-polybutadiene/organoclay nanocomposites were prepared and characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC), respectively. The XRD shows that exfoliated nanocomposites are formed dominantly at lower clay concentrations (less than 2%), at higher clay contents intercalated nanocomposites dominate. At the same time, the XRD indicates that the crystal structures of sPB formed in the sPB/organoclay nanocomposites do not vary, only the relative intensity of the peaks corresponding to (0 1 0) and (2 0 0)/(1 1 0) crystal planes, respectively, varies. The DSC and POM indicate that organoclay layers can improve cooling crystallization temperature, crystallization rate and reducing the spherulite sizes of sPB. TGA shows that under argon flow the nanocomposites exhibit slight decrease of thermal stability, while under oxygen flow the resistance of oxidation and thermal stability of sPB/organoclay nanocomposites were significantly improved relative to pristine sPB. The primary and secondary crystallization for pristine sPB and sPB/organoclay (2%) nanocomposites were analyzed and compared based on different approaches. The nanocomposites exhibit smaller Avrami exponent and larger crystallization rate constant, with respect to pristine sPB. Primary crystallization under isothermal conditions displays both athermal nucleation and three-dimensional spherulite growth and under nonisothermal processes the mechanism of primary crystallization becomes very complex. Secondary crystallization shows a lower-dimensional crystal growth geometry for both isothermal and nonisothermal conditions. The activation energy of crystallization of sPB and sPB/organoclay nanocomposites under isothermal and nonisothermal conditions were also calculated based on different approaches.  相似文献   

20.

The influence of three polymer dispersions [styrene–butadiene copolymer (SB), styrene–acrylic ester copolymer (SA) and polyacrylic ester (PA)] on the hydration of calcium sulfoaluminate (CSA) cement within 72 h was investigated by using isothermal conduction calorimetry, X-ray diffraction analysis and thermal gravimetric analysis. The results indicate that these three polymer dispersions perform different influences on the hydration heat flow of CSA cement during different periods, they all postpone the occurrence time of the maxima peaks, and its extent is mainly dependent on the addition amount. Polymer dispersions manifest great retardation on the initial hydration of CSA cement, and the effect is much more significant within 1 h. In this stage, the generation of ettringite is strongly delayed; however, the formation of ettringite is accelerated by these polymer dispersions at and after 2 h. Among these three polymer dispersions, PA demonstrates the highest acceleration effect on the hydration degree.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号