首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional lithium-based metal–organic framework Li2(2,6-NDC) (2,6-NDC = 2,6-naphthalene dicarboxylate) has been synthesized solvothermally and characterized by X-ray powder diffraction, elemental analysis, FT-IR spectroscopy, thermogravimetry and mass spectrometer analysis (TG–MS). The framework has exceptional stability and is stable to 863 K. The thermal decomposition characteristic of this compound was investigated through the TG–MS from 293 to 1250 K. The molar heat capacity of the compound was measured by temperature modulated differential scanning calorimetry (TMDSC) over the temperature range from 195 to 670 K for the first time. The thermodynamic parameters such as entropy and enthalpy versus 298.15 K based on the above molar heat capacity were calculated.  相似文献   

2.
Acidified aqueous solutions of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) were prepared from the corresponding oxides by dissolution in dilute perchloric acid. Once characterized with respect to trivalent metal cation and acid content, the relative densities of the solutions were measured at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa using a Sodev O2D vibrating tube densimeter. The relative massic heat capacities of the aqueous systems were also determined, under the same temperature and pressure conditions, using a Picker Flow Microcalorimeter. All measurements were made on solutions containing rare earth salt in the concentration range 0.01  m/(mol · kg−1)  0.2. Relative densities and relative massic heat capacities were used to calculate the apparent molar volumes and apparent molar heat capacities of the acidified salt solutions from which the apparent molar properties of the aqueous salt solutions were extracted by the application of Young's Rule. The concentration dependences of the isothermal apparent molar volumes and heat capacities of each aqueous salt solution were modelled using Pitzer ion-interaction equations. These models produced estimates of apparent molar volumes and apparent molar heat capacities at infinite dilution for each set of isothermal Vφ,2 and Cpφ,2 values. In addition, the temperature and concentration dependences of the apparent molar volumes and apparent molar heat capacities of the aqueous rare earth perchlorate salt solutions were modelled using modified Pitzer ion-interaction equations. The latter equations utilized the Helgeson, Kirkham, and Flowers equations of state to model the temperature dependences (at p=0.1 MPa) of apparent molar volumes and apparent molar heat capacities at infinite dilution. The results of the latter models were compared to those previously published in the literature.Apparent molar volumes and apparent heat capacities at infinite dilution for the trivalent metal cations Pr3+(aq), Gd3+(aq), Ho3+(aq), and Tm3+(aq) were calculated using the conventions V2(H+(aq))  0 and Cp2(H+(aq))  0 and have been compared to other values reported in the literature.  相似文献   

3.
Two new magnesium coordination polymers, [Mg(9,10-ADC)(H2O)2(DMF)2]n (1) and [Mg6(1,4-NDC)5(HCO2)4(DMF)(H2O)]n·2n[H2N(CH3)2]·2n(DMF) (2) (9,10-ADC = 9,10-anthracenedicarboxylate; 1,4-NDC = 1,4-naphthalenedicarboxylate) have been solvothermally synthesized. Compound 1 displays a one-dimensional linear chain structure, which is orderly constructed from magnesium metal cations connecting with carboxylic oxygen atoms of 9,10-H2ADC along the a axis. Compound 2 exhibits a three-dimensional framework composed of infinite chains of corner-sharing octahedral MgO6 with 1,4-NDC ligands forming one-dimensional channels along the a axis, where guest molecules reside. When guest molecules are removed, no structural transformation is found to occur, generating a robust structure with permanent porosity. The studies of CO2 absorption suggest that compound 2 is a promising adsorbent material for CO2.  相似文献   

4.
Apparent molar volumes Vϕ and apparent molar heat capacities Cp,ϕ were determined at the pressure 0.35 MPa for aqueous solutions of magnesium nitrate Mg(NO3)2 at molalities m = (0.02 to 1.0) mol · kg−1, strontium nitrate Sr(NO3)2 at m = (0.05 to 3.0) mol · kg−1, and manganese nitrate Mn(NO3)2 at m = (0.01 to 0.5) mol · kg−1. Our Vϕ values were calculated from solution densities obtained at T = (278.15 to 368.15) K using a vibrating-tube densimeter, and our Cp,ϕ values were calculated from solution heat capacities obtained at T = (278.15 to 393.15) K using a twin fixed-cell, differential, temperature-scanning calorimeter. Empirical functions of m and T were fitted to our results, and standard state partial molar volumes and heat capacities were obtained over the ranges of T investigated.  相似文献   

5.
A novel metal organic framework [Co (BTC)1/3 (DMF) (HCOO)] n (CoMOF, BTC = 1,3,5-benzene tricarboxylate, DMF = N,N-dimethylformamide) has been synthesized solvothermally and characterized by single crystal X-ray diffraction, X-ray powder diffraction, and FT-IR spectra. The molar heat capacity of the compound was measured by modulated differential scanning calorimetry (MDSC) over the temperature range from 198 to 418 K for the first time. The thermodynamic parameters such as entropy and enthalpy versus 298.15 K based on the above molar heat capacity were calculated. Moreover, a four-step sequential thermal decomposition mechanism for the CoMOF was investigated through the thermogravimetry and mass spectrometer analysis (TG-DTG-MS) from 300 to 800 K. The apparent activation energy of the first decomposition step of the compound was calculated by the Kissinger method using experimental data of TG analysis.  相似文献   

6.
Four copper complexes with similar trinuclear copper units, [Cu6(Bmshp)2(SO4)2(H2O)7]·2H2O (1), [Cu3(Bmshp)(ClO4)2(H2O)4]·5H2O (2), [Cu3(Bmshp)(DMF)4(H2O)2]·H2O·2DMF·2ClO4 (3) and [Cu3(H2Bcshp)(ClO4)2(H2O)4]·3H2O (4) (H4Bmshp = 2,6-bis[(3-methoxysalicylidene)hydrazinocarbonyl]pyridine, H6Bcshp = 2,6-bis[(3-carboxylsalicylidene)hydrazinocarbonyl]pyridine), were synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction analysis. Due to the different anions, solvents and ligands used in the syntheses, complexes 14 exhibit diverse supramolecular structures constructed from the corresponding trinuclear copper units via H-bonds.  相似文献   

7.
A flow microcalorimeter/densimeter system has been commissioned to measure heat capacities and densities of solutions containing radioactive species as a function of temperature. Measurements were made for NaTcO4(aq) at six temperatures (189.15 K to 373.15 K for the heat capacities, 287.43 K to 396.67 K for the densities) over the molality range 0.01 to 0.29 mol-kg–1. Measurements for NaReO4(aq) (NaReO4 is a common nonradioactive analogue for NaTcO4) were made under similar conditions, but for eight temperatures and a more extensive range of molalities, 0.05 to 0.65 mol-kg–1. Heat capacities of NaCl(aq) reference solutions were also measured from 293.15 K to 398.15 K.The heat capacity and density data are analysed using Pitzer's ioninteraction model. Equations for the apparent molar heat capacities and volumes are reported. Values of the NaReO4(aq) partial molar heat capacities are compared to literature values based on integral heats of solution. The agreement between the two sets of NaReO4 results is good below 330 K, but only fair at the higher temperatures. Values of the partial molar volumes have also been derived. Using literature values and the results of our experiments, it is calculated that the disproportionation of hydrated TcO2(s) to form TcO 4 (aq) and Tc(cr) occurs more readily at high temperatures. The uncertainties introduced by using thermodynamic values for ReO 4 (aq), in the absence of values for TcO 4 (aq), are discussed.  相似文献   

8.
在水热的条件下, 利用四(4-吡啶氧甲基)甲烷(L1)或四(3-吡啶氧甲基)甲烷(L2)、1, 4-萘二甲酸(1, 4-NDC)和d10金属离子发生自组装反应合成了2个化合物{[Cd2(L1)(1, 4-NDC)2]·2H2O}n (1)和{[Zn2(L2)(1, 4-NDC)2]·DMF·3H2O)}n (2)。单晶结构表明化合物1是通过L1配体与一维链[Cd(1, 4-NDC)]n相连构建而成的三维骨架化合物, 而化合物2是一对螺旋链与另外的一维链相互垂直交联而形成二维网络结构。更为重要的是, 通过引入2种不同空间位阻的配体, 研究了辅助配体对金属有机配位聚合物结构多样性的影响。另外, 它们的荧光性质也做了相应的探讨。  相似文献   

9.
在水热的条件下,利用四(4-吡啶氧甲基)甲烷(L1)或四(3-吡啶氧甲基)甲烷(L2)、1,4-萘二甲酸(1,4-NDC)和d10金属离子发生自组装反应合成了2个化合物{[Cd2(L1)(1,4-NDC)2]·2H2O}n(1)和{[Zn2(L2)(1,4-NDC)2]·DMF·3H2O)}n(2)。单晶结构表明化合物1是通过L1配体与一维链[Cd(1,4-NDC)]n相连构建而成的三维骨架化合物,而化合物2是一对螺旋链与另外的一维链相互垂直交联而形成二维网络结构。更为重要的是,通过引入2种不同空间位阻的配体,研究了辅助配体对金属有机配位聚合物结构多样性的影响。另外,它们的荧光性质也做了相应的探讨。  相似文献   

10.
Isobaric specific heat capacities were measured for {1-hexyl-3-methylimidazolium tetrafluoroborate (HMIMBF4) + acetonitrile (MeCN)} and {1-methyl-3-octylimidazolium tetrafluoroborate (OMIMBF4) + acetonitrile} within the whole range of composition and temperatures from (283.15 to 323.15) K. The excess molar heat capacities were calculated from the experimental results and satisfactorily fitted to Redlich–Kister type polynomials for several selected temperatures. Negative deviations from the additivity of molar heat capacities were observed within the whole composition range of (HMIBMF4 + MeCN) and (OMIMBF4 + MeCN). The results obtained have been interpreted in terms of interactions between ionic liquids and acetonitrile.  相似文献   

11.
Three isomorphous coordination polymers of general formula {[M(H2bna)·(DMF)2·(H2O)2]·DMF}n (M = Co for 1, Mn for 2, Ni for 3, respectively, where H4bna = 2,2′-dihydroxy-[1,1′]-binaphthalene-3,3′-dicarboxylate) were synthesized under solvothermal conditions and characterized by FTIR, single crystal X-ray diffraction, thermogravimetric analysis, and X-ray power diffraction analysis. All three polymers crystallize in the same monoclinic space group P21/n. The complexes are assembled into 1D helical chains, and each adjacent helical chain of the same chirality is further connected to form a chiral layer by hydrogen bond interactions. The layers are packed in alternating left-(M) and right-handed (P) chirality arrays. Magnetic studies reveal the presence of antiferromagnetic coupling interactions in complexes 1 and 2.  相似文献   

12.
利用精密绝热热量仪测定了化合物配合物Zn(Met)3(NO3)2·H2O (s) (Met=L-α-蛋氨酸)在78-371 K温区的摩尔热容. 通过热容曲线解析, 得到了该配合物的起始脱水温度为TD=325.10 K. 将该温区的摩尔热容实验值用最小二乘法拟合得到了摩尔热容(Cp)对约化温度(T)的多项式方程, 由此计算得到了配合物的舒平热容值和热力学函数值. 基于设计的热化学循环, 选择100 mL of 2 mol·L-1 HCl为量热溶剂, 利用等温环境溶解-反应热量计, 得到了298.15 K配合物的标准摩尔生成焓为ΔfHm0[Zn(Met)3(NO3)2·H2O(s),s]=-(1472.65±0.76) J·mol-1.  相似文献   

13.
The heat capacities of two iron phosphates, Fe(PO3)3 and Fe2P2O7, have been measured over the temperature range from (2 to 300) K using the heat capacity option of a Quantum Design Physical Property Measurement System (PPMS). A phase transition related to magnetic ordering has been found in the heat capacity at T = 8.76 K for Fe(PO3)3 and T = 18.96 K for Fe2P2O7, which are comparable with literature values from magnetic measurements. By fitting the experimental heat capacity values, the thermodynamic functions, magnetic heat capacities, and magnetic entropies have been determined. Additionally, theoretical fits at low temperatures suggest that Fe2P2O7 has an anisotropic antiferromagnetic contribution to the heat capacity and a large linear term likely caused by oxygen vacancies. Further data fitting in a series over widened temperature regions found that this linear term exists only below 15 K and disappears gradually from (15 to 17) K.  相似文献   

14.
The low-temperature molar heat capacity of crystalline Ni9(btz)12(DMA)6(NO3)6 (1) (btz = benzotriazolate; DMA = N,N′-dimethylacetamide) was measured by temperature-modulated differential scanning calorimetry for the first time. The thermodynamic parameters such as entropy and enthalpy relative to reference temperature 298.15 K were obtained based on the above molar heat capacity data. The compound was synthesized by solvothermal method and characterized by powder X-ray diffraction and FT-IR spectra. Moreover, the thermal stability and the decomposition mechanism of Ni9(btz)12(DMA)6(NO3)6 were investigated by thermogravimetry (TG) analysis under air atmosphere from 300 to 873 K. The experimental results through TG measurement demonstrate that the compound has a two-stage mass loss in air flow.  相似文献   

15.
Lü Yinfeng 《中国化学》2010,28(4):521-530
The crystal structure and composition of (C12H25NH3)2ZnCl4(s) were characterized by chemical and elemental analysis, X‐ray powder diffraction technique and X‐ray crystallography. The lattice energy of the title compound was calculated to be UPOT=888.82 kJ·mol?1. Low temperature heat capacities of the title compound have been measured by a precision automated adiabatic calorimeter over the temperature range from 80 to 403 K. An obvious solid to solid phase transition occurred in the heat capacity curve, and the peak temperature, molar enthalpy and molar entropy of the phase transition of the compound were determined to be Ttrs= (364.02±0.03) K, (trsHm= (77.567±0.341) kJ·mol?1, and (trsSm= (213.77±1.17) J·K?1·mol?1, respectively. Experimental molar heat capacities before and after the phase transition were respectively fitted to two polynomial equations. The smoothed molar heat capacities and fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were calculated and tabulated at an interval of 5 K.  相似文献   

16.
Low-temperature heat capacities of the solid coordination compound trans-Cu(Ala)2(s) have been measured by a precision automated adiabatic calorimeter over the temperature range from T = 78 K to 390 K. The experimental values of the molar heat capacities in the temperature region were fitted to a polynomial equation of heat capacities (Cp,m) with the reduced temperatures (X), [X = f (T)], by a least square method. The smoothed molar heat capacities and thermodynamic functions of the complex trans-Cu(Ala)2(s) were calculated based on the fitted polynomial. The smoothed values of the molar heat capacities and fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were tabulated with an interval of 5 K. Enthalpies of dissolution of {Cu(Ac)2·H2O(s) + 2Ala (s)} and 2:1 HAc (aq) in 100 ml of 2 mol dm−3 HCl, respectively, and trans-Cu(Ala)2(s) in the solvent [2:1 HAc (aq) + 2 mol dm−3 HCl] at T = 298.15 K were determined to be , , and by means of an isoperibol solution-reaction calorimeter. The standard molar enthalpy of formation of the compound was determined as from the enthalpies of dissolution and other auxiliary thermodynamic data using a Hess thermochemical cycle.  相似文献   

17.
The apparent molar heat capacities Cp, φ  and apparent molar volumes Vφ  of Y2(SO4)3(aq), La2(SO4)3(aq), Pr2(SO4)3(aq), Nd2(SO4)3(aq), Eu2(SO4)3(aq), Dy2(SO4)3(aq), Ho2(SO4)3(aq), and Lu2(SO4)3(aq) were measured at T =  298.15 K and p =  0.1 MPa with a Sodev (Picker) flow microcalorimeter and a Sodev vibrating-tube densimeter, respectively. These measurements extend from lower molalities of m =  (0.005 to 0.018) mol ·kg  1to m =  (0.025 to 0.434) mol ·kg  1, where the upper molality limits are slightly below those of the saturated solutions. There are no previously published apparent molar heat capacities for these systems, and only limited apparent molar volume information. Considerable amounts of the R SO4 + (aq) and R(SO4)2  (aq) complexes are present, where R denotes a rare-earth, which complicates the interpretation of these thermodynamic quantities. Values of the ionic molar heat capacities and ionic molar volumes of these complexes at infinite dilution are derived from the experimental information, but the calculations are necessarily quite approximate because of the need to estimate ionic activity coefficients and other thermodynamic quantities. Nevertheless, the derived standard ionic molar properties for the various R SO4 + (aq) and R(SO4)2  (aq) complexes are probably realistic approximations to the actual values. Comparisons indicate that Vφ  {RSO4 + , aq, 298.15K}  =   (6  ±  4)cm3· mol  1and Vφ  {R(SO4)2  , aq, 298.15K}  =  (35  ±  3)cm3· mol  1, with no significant variation with rare-earth. In contrast, values of Cp, φ  { RSO4 + , aq, 298.15K } generally increase with the atomic number of the rare-earth, whereas Cp, φ  { R(SO4)2  , aq, 298.15K } shows a less regular trend, although its values are always positive and tend to be larger for the heavier than for the light rare earths.  相似文献   

18.
This paper describes the results of thermodynamic study of dissolution of proto- and mesoporphyrins in liquid N,N-dimethylformamide (DMF) at different temperatures. Enthalpies of solution and solubility of protoporphyrin dimethylester (PDE) and mesoporphyrin dimethylester (MDE) in DMF have been obtained from T = (298 to 318) K. Free energies, enthalpies, entropies and heat capacities of solution have been computed from the combination of enthalpic and solubility data via the Gibbs–Helmholtz equation. We have shown that for all blood porphyrins this approach reproduces both free energies of solution and solubility values for the physiological temperature range.  相似文献   

19.
The molar heat capacities of GeCo2O4 and GeNi2O4, two geometrically frustrated spinels, have been measured in the temperature range from T=(0.5 to 400) K. Anomalies associated with magnetic ordering occur in the heat capacities of both compounds. The transition in GeCo2O4 occurs at T=20.6 K while two peaks are found in the heat capacity of GeNi2O4, both within the narrow temperature range between 11.4<(T/K)<12.2. Thermodynamic functions have been generated from smoothed fits of the experimental results. At T=298.15 K the standard molar heat capacities are (143.44 ± 0.14) J · K−1 · mol−1 for GeCo2O4 and (130.76 ± 0.13) J · K−1 · mol−1 for GeNi2O4. The standard molar entropies at T=298.15 K for GeCo2O4 and GeNi2O4 are (149.20 ± 0.60) J · K−1 · mol−1 and (131.80 ± 0.53) J · K−1 · mol−1 respectively. Above 100 K, the heat capacity of the cobalt compound is significantly higher than that of the nickel compound. The excess heat capacity can be reasonably modeled by the assumption of a Schottky contribution arising from the thermal excitation of electronic states associated with the CO2+ ion in a cubic crystal field. The splittings obtained, 230 cm−1 for the four-fold-degenerate first excited state and 610 cm−1 for the six-fold degenerate second excited state, are significantly lower than those observed in pure CoO.  相似文献   

20.
Molar heat capacities of twelve linear alkane-α,ω-diamides H2NOC-(CH2)(n-2)-CONH2, (n=2 to 12 and n=14) were measured by differential scanning calorimetry at T=183 to 323 K. Heat flow rate calibration of the Mettler DSC 30 calorimeter was carried out by using benzoic acid as reference material. The calibration was checked by determining the molar heat capacity of urea in the same temperature range as that of measurements. The molar heat capacities of alkane-α,ω-diamides increased in function of temperature and fitted into linear equations. Smoothed values of C p,m at 298.15 K displayed a linear increase with the number of carbon atoms. The C p,m contribution of CH2 group was (22.6±0.4) J K−1 mol−1, in agreement with our previous results concerning linear alkane-a,ω-diols and primary alkylamides as well as the literature data on various series of linear alkyl compounds. On leave from the Faculty of Chemistry, University of Craiova, Calea Bucureşti 165, Craiova 1100, Romania  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号