首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isothermal and non-isothermal decompositions of cellulose nanofiber (CNF) and microfibrillated cellulose (MFC)-filled polypropylene (PP) composites were evaluated and compared with microcrystalline cellulose (MCC)-filled composites by means of thermogravimetric analysis (TG). X-ray diffraction was employed to evaluate crystallinity of the composites. The degree of maximum thermal degradation (ultimate DTG peak value) increased and thermal degradation onset temperature decreased as the cellulose content increased because the thermal stability of cellulose fillers is lower than that of neat PP, but the thermal degradation of the composite was hindered at higher temperature conditions because of the increased residual mass content of the cellulose nanofibril fillers compared to the matrix polymer. The isothermal residual mass of the cellulose nanofibril-filled PP composites under melt blending and injection molding temperatures was decreased marginally by incorporation of the cellulose reinforcement but still exhibited considerable isothermal stability. The raw materials and composites examined in this study were not affected by the manufacturing process temperatures utilized to produce the composites. The MCC decreased the composite crystallinity while the nano-sized cellulose (CNF and MFC) did not appear to have an effect on crystallinity.  相似文献   

2.
Polylactic acid (PLA) was used as partial replacement for conventional thermoplastic matrix, new composites comprising cellulose, polypropylene (PP), and PLA being realized. In order to obtain a compatible interface between cellulosic pulp and polymeric matrix, two chemical modifications of cellulose with stearoyl chloride and toluene di‐isocyanate (TDI) were performed, structural changes being evidenced by X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The composite materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic scanning calorimetry, impact, tensile and melt rheological tests, surface tension, and dynamic vapor sorption. Because promising results for impact strength and Young modulus were recorded when replacing 15% of PP with PLA in blends of PP with the same cellulosic pulp load, the aim of our study was to assess the behavior to accelerate weathering of composites comprising PP, cellulosic pulp, and PLA. Although the slight decrease in the mechanical properties was recorded after accelerated weathering, the use of functionalized cellulose successfully prevented the deterioration of surface materials, especially for composite comprising stearoyl chloride treated cellulose pulp. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
制备了一系列具有不同界面状态的聚丙烯 (PP) 硫酸钡 (BaSO4)复合体 .PP BaSO4的界面分别用硅烷、硬脂酸、马来酸酐接枝聚丙烯 (PP g MAH)改性 .研究表明 ,填充体系的熔体粘度和熔体弹性均高于基体 .以硅烷和PP g MAH进行界面改性后 ,PP BaSO4的界面相互作用加强 ,导致复合体系中的熔体粘度和熔体弹性进一步提高 ,同时BaSO4对PP的成核活性提高 .填料用硬脂酸处理后 ,硬脂酸能够在填料粒子表面上形成一个包覆层 ,使粒子与PP的亲和性改善 .同时该包覆层具有润滑作用 ,使得复合体系的熔体粘度和熔体弹性下降 ,并使得该体系中BaSO4的成核活性低于硅烷和处理的体系 .本文探讨了由复合体系的熔体粘度定量比较填充复合体系中聚合物 填料界面相互作用的方法 ,讨论了界面改性对复合体系流变性质和结晶行为影响的机理  相似文献   

4.
In this study, polypropylene (PP)/thermoplastic polyurethanes (TPU) filled with inorganic intumescent flame retardant expanded graphite (EG) was prepared by melt blending in a twin-screw extruder. The thermal stability, fire retardancy, mechanical properties, and fracture morphology of PP/TPU composites with treated and untreated EG were investigated by thermogravimetric analysis, cone calorimeter, and scanning electron microscope. The results showed that both untreated and treated EG can greatly enhance the thermal stability and fire resistance of polymer matrix materials. Compared with untreated EG, treated EG can further improve the flame retardancy of the composites. For example, treated EG can further reduce the heat release rate, total heat release, and CO emissions of the composites in the combustion. Surface treatment of EG could significantly improve elongation at break and impact strength of PP/TPU/EG composites due to its enhanced interfacial adhesion and the good dispersion of EG particles in the polymer matrix.  相似文献   

5.
Nanocomposites of isotactic polypropylene (PP) with polyhedral oligomeric silsesquioxanes (POSS) [RSiO1,5]8 having different alkyl substituents (R = methyl, isobutyl, isooctyl) were obtained by melt blending and analysed with electron microscopy, optical microscopy and DSC calorimetry. The influence of POSS structure on the morphological characteristics, the crystallization and melting behaviour of PP/POSS composites was investigated with varying the filler amount. The crystallization kinetics of the composites from the melt, examined both in isothermal and non-isothermal conditions, demonstrated that the nucleation activity of the examined POSS can be related to the length of alkyl substituents which, depending on the loading amount, affect the filler dispersion in the PP matrix and the growth of polymer crystals.  相似文献   

6.
The relation between the rheological behavior and various interfacial properties ofKaolin rigid particle toughened polypropylene (PP / Kaolin) composites were studied bymeans of parallel-plate rheometer, melt flow rate apparatus, scanning electron microscopy(SEM) and other testing methods. The results show that addition of interfacial modffier toPP/Kaolin composites is advantageous to homogeneous dispersion of filler in PP matrix,formation of flexible interlayer between Kaolin particles and PP matrix and Amprovementof the melt processibility of the composites.  相似文献   

7.
The electrical conductivity and impact strength of polypropylene(PP)/EPDM/carbon black ternary composites were investigated in this paper. Two processing methods were employed to prepare these ternary composites. One was called one‐step processing method, in which the elastomer and the filler directly melt blended with PP matrix. Another one was called two‐step processing method, in which the elastomer and the filler were mixed first, and then melt blended with pure PP. To get an optimal phase morphology that favors the electrical conductivity and impact strength, controlling the distribution of CB in PP/EPDM blend was a crucial factor. Thus the interfacial tension and the work of adhesion were first calculated based on the measurement of contact angle, and the results showed that CB tended to be accumulated around EPDM phases to form filler‐network structure. Expectably, the filler‐network structure was observed in PP/EPDM/CB(80/20/3) composite prepared by two‐step processing method. The formation of this filler‐network structure decreased the percolation threshold of CB particles in polymer matrix, and the electrical conductivity as well as Izod impact strength of the composite increased dramatically. This work provided a new way to prepare polymer composites with both improved conductivity and impact strength. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Polyoxymethylene (POM)/elastomer/filler ternary composites were prepared, in which thermoplastic polyurethane (TPU) and inorganic filler, namely, CaCO3, were used to achieve balanced mechanical properties of POM. The dispersion and phase morphology of POM/elastomer/filler composites were found to depend largely on processing method, CaCO3 content in masterbatch and the filler size. Two processing methods were employed to prepare POM/elastomer/filler ternary composites. One is called the one-step method, in which elastomer and the filler directly melt blended with POM matrix. The other is called the two-step method, in which the elastomer and the filler were mixed to get masterbatch first, which was then melt blended with pure POM of different content. The effect of phase morphology and processing method on impact strength was investigated. It was found that the two-step method results in an increase in impact strength but not for the one-step method. Additionally, the impact strength of POM ternary composites decreases with the increase in the size of CaCO3 particles.  相似文献   

9.
Polypropylene (PP) is a highly non-polar polymer. Where as the clay is a polar material. Hence generally we get poor dispersion out of it. In this work, effort has been taken to improve the dispersion of clay in to polypropylene matrix. Clay was modified with Poly (oxypropylene) ammonium chloride. Composites were prepared by melt blending method in a twin screw extruder. Three different ratios namely 1.5, 3.0, and 4.5 weight % loadings of clay were adopted to prepare these composites by this technique. Their structures were characterized by FTIR, x-ray diffraction (XRD). Notable change in the crystallization and melting temperatures were observed by differential scanning calorimetry (DSC). The distribution of clay in the matrix was also studied through optical microscope (OM) and scanning electron microscope (SEM). The effect of clay modification on the performance of the composites was studied.  相似文献   

10.
Ammonium polyphosphate (APP)/polypropylene (PP) composites were prepared by melt blending and extrusion in a twin-screw extruder. APP was first modified by a silane coupling agent KH-550 then added to polypropylene. The surface modification of APP by the coupling agent decreased its water solubility and its interface compatibility with the PP matrix. Limiting oxygen index (LOI) and thermogravimetric analysis (TGA) were used to characterize the flame retardant property and the thermal stability of the composites. The addition of APP improved the flame retardancy of PP remarkably. The crystal structures of APP/PP composites were characterized by X-ray diffraction (XRD). The results indicated that β-crystal phase PP may be formed. The structures and morphologies of APP, KH-550/APP and APP/PP composites were characterized by field-emission scanning electron microscope (FESEM). The mechanical property tests showed good mechanical properties of composite materials. Compared with unmodified one, the impact strength, tensile strength and elongation of modified APP/PP were all improved.  相似文献   

11.
Two grades of isotactic polypropylene (homopolymer and block copolymer) were filled with magnesium and aluminium hydroxides, and studied focusing the mechanical and fracture characteristics of the composites. As expected, dispersion of such fillers in PP resulted in improved stiffness and reduced tensile yield strength. By one hand, the composites fracture resistance was characterised at low strain rate applying the J‐integral concept; the resistance to crack growth initiation (JIC) was found decreasing as the Mg(OH)2 concentration was raised in the copolymer PP matrix. By the other hand, the linear‐elastic fracture mechanics (LEFM) parameters were determined by means of instrumented impact tests at 1 m/s on the homopolymer PP filled with uncoated Al(OH)3 particles. The higher the Al(OH)3 mean particle size, the lower the composite fracture energy (GIC). In the opposite, with commercial surface‐coated filler grades it was not possible to achieve LEFM conditions to characterise the fracture toughness of filled PP at 1 m/s, because the Mg(OH)2 surface coating, which is applied in practice to improve the melt processing, acts increasing the composite plasticity and reducing the tensile yield strength.  相似文献   

12.
The effect of filler types of mica and talc on the oscillatory shear rheological properties, mechanical performance, and morphology of the chemically coupled polypropylene composites is studied in this work. The Maleic Anhydride grafted Polypropylene (MAPP) was used as an adhesion promoter for coupling mineral particles with the polypropylene matrix. The samples were prepared by a co‐rotating, L/D = 40, 25 mm twin screw extruder. The tensile tests carried out on the injection molded samples showed a reinforcing effect of talc up to 20 wt% on the Polypropylene (PP). The tensile strength of PP‐mica composites showed a slight decrease at all percentages of mica. The effect of chemical coupling by using MAPP on the tensile strength was more pronounced in increasing the tensile strength for PP‐mica than PP‐talc composites. The complex viscosity curve of pure PP and the composites, showed a Newtonian plateau (η0) up to 30 wt% at low frequency terminal zone. By increasing the filler content to 40 and 50 wt%, the complex viscosity at very low shear rates sharply increased and showed yield behavior that can be due to the formation of filler particles networks in the melt. At the optimum amount of coupling agent, a minimum in cross over frequency curve against MAPP content is observed. The optimum amount of coupling agent for PP‐talc composites is about 1.5%, and about 3% for PP‐mica formulations. The analysis of viscosity behavior at power‐law high region, revealed the more shear thinning effect of mica than talc on the PP matrix resin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Cellulose powders hydrophobized by surface esterification with carboxylic acids with different chain lengths (3, 10 and 18 carbons) were dispersed in a polypropylene matrix. Quality of the dispersion and nucleation activity of the filler were investigated by means of differential scanning calorimetry and optical microscopy. The results showed that the esterification decreases the crystallization rate in case of cellulose esterified with propionic or decanoic acid. On the other hand, the oleic acid ester demonstrated slightly higher crystallization rates than the unmodified cellulose, which was ascribed primarily to the newly arisen non-esterified surface after disintegration of the filler. Optical microscopy with hot stage showed the high nucleation ability of the natural cellulose fiber and its suppression in case of esterified surfaces. A complete inability to nucleate polypropylene crystallization was observed in case of decanoyl ester, while the other two retained some activity, but lower than that of the natural fiber. Finally, analysis of the filler dispersion and distribution revealed that the decanoyl and octadecanoyl esters disintegrate during melt mixing, while both dispersion and distribution of the fibers modified with propionic acid are poor.  相似文献   

14.
The melt mixing technique was used to prepare various polypropylene (PP)‐based (nano)composites. Two commercial organoclays (denoted 20A and 30B) served as the fillers for the PP matrix, and two different maleated (so‐called) compatibilizers (denoted PP‐MA and SMA) were employed as the third component. The results from X‐ray diffraction (XRD) and transmission electron microscope (TEM) experiments revealed that 190 °C was an adequate temperature for preparing the nanocomposites. Nanocomposites were achieved only if specific pairs of organoclay and compatibilizer were simultaneously incorporated in the PP matrix. For example, PP/20A(5 wt %)/PP‐MA(10 wt %) and PP/30B(5 wt %)/SMA(5 wt %) composites exhibited nanoscaled dispersion of 20A or 30B in the PP matrix. Differential scanning calorimetry (DSC) results indicated that the organoclays served as nucleation agents for the PP matrix. Generally, their nucleation effectiveness increased with the addition of compatibilizers. The thermal stability enhancement of PP after adding 20A was confirmed with thermogravimetric analysis (TGA). The enhancement became more evident as a suitable compatibilizer was further added. However, for the 30B‐included composites, thermal stability enhancement was not evident. The dynamic mechanical properties (i.e., storage modulus and loss modulus) of PP increased as the nanocomposites were formed; the properties increment corresponded to the organoclay dispersion status in the matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4139–4150, 2004  相似文献   

15.
Waste tire powder subjected to allylamine modification in the presence of ultraviolet (UV) radiation has been used to prepare polypropylene based thermoplastic vulcanizates with maleic anhydride polypropylene (MA‐PP) as compatibilizer. The effect of increasing the concentration of MA‐PP on performance characteristics like tensile strength, elongation and rheological properties have been investigated. X‐ray diffraction studies of the PP/waste tire powder blend indicate the disappearance of β crystalline peaks on addition of waste tire powder in the PP, whereas it is observed in the allylamine modified rubber powder loaded PP. Differential scanning calorimetry results further supported the above fact. The improvement in mechanical properties of the PP/allylamine modified rubber powder loaded thermoplastic vulcanizates has been explained in terms of βα transformation of PP crystals during straining of the samples and uniform dispersion of allylamine coated rubber powder in the PP matrix. The melt rheological properties of the thermoplastic vulcanizates loaded with modified rubber powder are higher than its counterpart due to the higher dispersion as a result of chemical interaction between the rubber powder surface with the MA‐PP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Recently, biocomposites have emerged as materials of great interest to the scientists and industry around the globe. Among various polymers, polylactic acid (PLA) is a popular matrix material with high potential for advanced applications. Various particulate materials and nanoparticles have been used as the filler in PLA based matrix. One of the extensively studied filler is cellulose. However, cellulose fibres, due to their hydrophilic nature, are difficult to blend with a hydrophobic polymer matrix. This leads to agglomeration and creates voids, reducing the mechanical strength of the resulting composite. Moreover, the role of the various forms of pure cellulose and its particle shape factors has not been analyzed in most of the current literature. Therefore, in this work, materials of various shapes and shape factors were selected as fillers for the production of polymer composites using Polylactic acid as a matrix to fill this knowledge gap. In particular, pure cellulose fibres (three types with different elongation coefficient) and two mineral nanocomponents: precipitated calcium carbonate and montmorillonite were used. The composites were prepared by a melt blending process using two different levels of fillers: 5% and 30%. Then, the analysis of their thermomechanical and physico-chemical properties was carried out. The obtained results were presented graphically and discussed in terms of their shape and degree of filling.  相似文献   

17.
Thermal stability of hydrophobized cellulose powders was investigated from the perspective of potential use as filler in non-polar polyolefinic matrix. The hydrophobization was done by heterogeneous esterification with three carboxylic acids which differ in chain length (3, 10 and 18 carbons). Data measured by means of thermogravimetry (TG) were recalculated according to model-free isoconversional method to construct time–temperature plots. It was demonstrated that the esterification significantly decreases thermal stability of the material, which reduces feasible processing window. Under non-oxidative atmosphere, the single-step decomposition of materials is prevailing, while the process is more complex in air. In both cases the oleic acid esters showed the lowest stability and the original cellulose was the most stable. Finally, all powders were compounded with polyethylene or polypropylene. Obtained composites were then subjected to color measurement and TG. Even though the materials were partly degraded, which was indicated by the yellowish hue of the composites, virtually no impact of the filler pyrolysis on the polymer matrix decomposition was observed, particularly in case of decanoyl esters.  相似文献   

18.
Polymer systems based on polymer waste offer promising way to increase recycling in the society. Since fillers play a major role in determining the properties and behavior of polymer composites, recycled polymers can also be combined with fillers to enhance the stiffness and thermal stability. In this study, blends of recycled polyethylene and recycled polypropylene with mica and glass fiber were prepared by melt blending technique. The effect of the particle loading, filler type, and filler–matrix interaction on thermal degradation and thermal transition of processed systems were investigated. Thermogravimetric analysis, differential thermogravimetric analysis, and differential scanning calorimetry were used in this investigation. Comparative analysis shows that both fillers produced different effects on thermal properties of the processed systems. These results were confirmed by calculating the activation energy for thermal degradation and thermal transition using Kissinger and Flynn–Wall expressions.  相似文献   

19.
Lu Y  Weng L  Cao X 《Macromolecular bioscience》2005,5(11):1101-1107
Environmentally friendly starch biocomposites were successfully developed using a colloidal suspension of cottonseed linter cellulose crystallite as a filler to reinforce glycerol plasticized starch (PS). The cellulose crystallites, having lengths of 350 +/- 70 nm and diameters of 40 +/- 8 nm on average, were prepared from cottonseed linters by acid hydrolysis. The dependence of morphology and properties of the PS-based biocomposites on cellulose crystallites content in the range from 0 to 30 wt.-% was investigated by scanning electron microscopy, differential scanning thermal analysis, dynamic mechanical thermal analysis, and measurements of mechanical properties and water absorption. The results indicate that the strong interactions between fillers and between the filler and PS matrix play a key role in reinforcing the resulting composites. The PS/cellulose crystallite composites, conditioned at 50% relative humidity, undergo an increase in both tensile strength and Young's modulus from 2.5 MPa for PS film to 7.8 MPa and from 36 MPa for PS film to 301 MPa. Further, incorporating cottonseed linter cellulose crystallites into PS matrix leads to an improvement in water resistance for the resulting biocomposites. The mechanical behaviors of the starch-based biocomposites as a function of cellulose crystallites content.  相似文献   

20.
The thermal and mechanical performance of composites with nano-sized cotton fillers embedded in low-density polyethylene (LDPE) is investigated. Microfibrillated cotton was prepared by microgrinding mechanical treatment of pulverized cotton (pCot) derived from waste T-shirts, resulting in nano-sized fibrils of the cellulose that retain high crystallinity. Film composites of LDPE with pCot before and after microgrinding were fabricated through melt extrusion and the effect of filler size on mechanical, thermal and morphological properties of the composite was investigated. Compounding microfibrillated cotton with LDPE resulted in well-dispersed nanocomposites with no discoloration after 10 min of melt extrusion at 170 °C. At concentrations up to 10 % by weight, the composites showed increased modulus, increased tensile strength and a slight decrease in elongation to break. Further improvement in the dispersion and mechanical properties of the cotton-based fillers was realized by the use of LDPE powder instead of polymer pellets fed to the extruder. This research demonstrates the processing and applicability of the use of recycled cotton-based nano-sized fillers in melt-processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号