首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The influence of cyclodextrins (CDs; α-CD, β-CD and γ-CD) upon the basic hydrolysis of carbofuran (CF) was studied. The observed behaviour was an inhibition and this decrease in the rate constants is due to the formation of an unreactive complex between CF and the CDs. A kinetic model was applied to this system and the kinetic coefficients were obtained.  相似文献   

2.
为进一步弄清La3+离子对光合磷酸化及Hill反应影响作用机制,采用分光光度法,控制反应液中La3+离子浓度在0~20μmol.L-1范围,对纯化的游离态CF1-ATPase水解ATP活性测定结果表明:La3+离子对CF1-ATPase具有明显的促进作用。而且随La3+离子浓度增大,CF1-ATPase活性动力学曲线明显呈现"S"型。但当La3+离子浓度大于25μmol.L-1之后,La3+离子对游离态CF1-ATPase则表现出一定的抑制作用。而La3+离子浓度在0~30μmol.L-1范围内,受La3+离子作用类囊体膜CF1-ATPase活性动力学曲线则呈现双"S"形曲线。热稳定性实验结果表明:La3+离子可以降低CF1-ATPase活化能,提高CF1-ATPase的热稳定性。La3+离子对CF1-ATPase活性的影响可能与CF1-ATPase分子上别构位点有关,这也可能是La3+离子促进叶绿体Hill反应的关键部位。  相似文献   

3.
This Communication reports simultaneous tracking of structural and kinetic information for the photoinduced elimination reaction of 1,2-diiodotetrafluoroethane in solution by transient X-ray diffraction. The transient structure of .CF2CF2I is determined to be a classical mixture whereas .CH2CH2I is bridged. Compared with the gas phase reaction, the secondary dissociation of .CF2CF2I into C2F4 and I is slowed down by a factor of 6 in solution. Transient X-ray diffraction offers a complementary method for capturing transient structures in solution which might be invisible or "optically silent" in time-resolved optical spectroscopy.  相似文献   

4.
We have studied the association reaction of the CF(2)Cl radicals with O(2) in presence of N(2). The infrared multiple photon dissociation (IRMPD) technique with a homemade TEA CO(2) laser was used for the CF(2)Cl radical generation and the vibrational chemiluminiscence technique was set up for the study of the reaction kinetics. The time-resolved IR fluorescence of the vibrationally excited CF(2)O photoproduct was used to measure the disappearance rate of these radicals. A kinetic mechanism is presented to account for the rate of production of CF(2)O(*). The CF(2)Cl radical association reaction rate with O(2), evidence of a direct channel of photoproduct formation and its reaction rate, and the CF(2)O(*) collisional deactivation rate have been obtained.  相似文献   

5.
Reactions of iridium(fluoroalkyl)hydride complexes CpIr(PMe(3))(CF(2)R(F))Y (R(F) = F, CF(3); Y = H, D) with LutHX (Lut = 2,6-dimethylpyridine; X = Cl, I) results in C-F activation coupled with hydride migration to give CpIr(PMe(3))(CYFR(F))X as variable mixtures of diastereomers. Solution conformations and relative diastereomer configurations of the products have been determined by (19)F{(1)H}HOESY NMR to be (S(C), S(Ir))(R(C), R(Ir)) for the kinetic diastereomer and (R(C), S(Ir))(S(C), R(Ir)) for its thermodynamic counterpart. Isotope labeling experiments using LutDCl/CpIr(PMe(3))(CF(2)R(F))H and CpIr(PMe(3))(CF(2)R(F))D/LutHCl) showed that, unlike a previously studied system, H/D exchange is faster than protonation of the alpha-CF bond, giving an identical mixture of product isotopologues from both reaction mixtures. The kinetic rate law shows a first-order dependence on the concentration of iridium substrate, but a half-order dependence on that of LutHCl; this is interpreted to mean that LutHCl dissociates to give HCl as the active protic source for C-F bond activation. Detailed kinetic studies are reported, which demonstrate that lack of complete diastereoselectivity is not a function of the C-F bond activation/H migration steps but that a cationic intermediate plays a double role in loss of diastereoselectivity; the intermediate can undergo epimerization at iridium before being trapped by halide and can also catalyze the epimerization of kinetic diastereomer product to thermodynamic product. A detailed mechanism is proposed and simulations performed to fit the kinetic data.  相似文献   

6.
赵媛  宁攀  王丽 《化学研究》2011,22(1):3-5
采用直接动力学方法研究了CF3CHFCF3与氯原子反应的动力学特性,利用包含小曲率隧道效应的正则变分过渡态理论确定了200~2 000 K温度区间内反应的速率常数.  相似文献   

7.
由于氟氟烃(CFCs)对大气臭氧层有破坏作用,人们拟以另外的化合物来代替它,CF3CX2H(X=H,CI,F)可能是一类合适的取代物.但人们对它及其反应产物对大气的影响还不清楚.CFaC(0)F是CFaCX。H大气光氧化过程的终产物之一[1-3],其在大气中的后继反应行为将直接关系到CF2  相似文献   

8.
The kinetics of electron attachment to CF(3) as a function of temperature (300-600 K) and pressure (0.75-2.5 Torr) were studied by variable electron and neutral density attachment mass spectrometry exploiting dissociative electron attachment to CF(3)Br as a radical source. Attachment occurs through competing dissociative (CF(3) + e(-) → CF(2) + F(-)) and non-dissociative channels (CF(3) + e(-) → CF(3)(-)). The rate constant of the dissociative channel increases strongly with temperature, while that of the non-dissociative channel decreases. The rate constant of the non-dissociative channel increases strongly with pressure, while that of the dissociative channel shows little dependence. The total rate constant of electron attachment increases with temperature and with pressure. The system is analyzed by kinetic modeling in terms of statistical theory in order to understand its properties and to extrapolate to conditions beyond those accessible in the experiment.  相似文献   

9.
Experimental data from the literature for cross sections and rate constants for dissociative electron attachment to CF(3)Br, with separately varied electron and gas temperatures, are analyzed by a kinetic modeling approach. The analysis suggests that electronic and nuclear contributions to the rate constants can be roughly separated, the former leading to a negative temperature coefficient, the latter to a positive temperature coefficient. The nuclear factor in the rate constant is found to be of Arrhenius form with an activation energy which is close to the energy of crossing of the CF(3)Br and CF(3)Br(-) potential curves along the CBr bond.  相似文献   

10.
Dissociative scattering of CF3+ ions in collision with a self-assembled monolayer surface of fluorinated alkyl thiol on a gold 111 crystal has been studied at low ion kinetic energies (from 29 to 159 eV) using a custom built tandem mass spectrometer with a rotatable second stage energy analyzer and mass spectrometer detectors. Energy and intensity distributions of the scattered fragment ions were measured as a function of the fragment ion mass and scattering angle. Inelastically scattered CF3+ ions were not observed even at the lowest energy studied here. All fragment ions, CF2+, CF+, F+, and C+, were observed at all energies studied with the relative intensity of the highest energy pathway, C+, increasing and that of the lowest energy pathway, CF2+, decreasing with collision energy. Also, the dissociation efficiency of CF3+ decreased significantly as the collision energy was increased to 159 eV. Energy distributions of all fragment ions from the alkyl thiol surface showed two distinct components, one corresponding to the loss of nearly all of the kinetic energy and scattered over a broad angular range while the other corresponding to smaller kinetic energy losses and scattered closer to the surface parallel. The latter process is due to delayed dissociation of collisionally excited ions after they have passed the collision region as excited parent ions. A similar study performed at 74 eV using a LiF coated surface on a titanium substrate resulted only in one process for all fragment ions; corresponding to the delayed dissociation process. The intensity maxima for these fragmentation processes were shifted farther away from the surface parallel compared to the thiol surface. A new mechanism is proposed for the delayed dissociation process as proceeding via projectile ions' neutralization to long-lived highly excited Rydberg state(s), reionization by the potential field between the collision region and entrance to the energy analyzer, and subsequent dissociation several microseconds after collisional excitation. A kinematic analysis of experimental data plotted as velocity Newton diagrams demonstrates that the delayed dissociation process results from the collisions of the ion with the bulk surface; i.e., the self-assembled monolayer surface acts as a bulk surface. A similar analysis for the highly inelastic collision processes shows that these are due to stronger collisions with a fraction of the thiol molecular chain, varying in length (mass) with the ion energy.  相似文献   

11.
A combination of laser flash photolysis and competitive kinetic methods has been used to measure the absolute bimolecular rate constants for hydrogen atom abstraction in water from a series of fluorinated alkoxides and aldehyde hydrates by the perfluoroalkyl radical, *CF2CF2OCF2CF2SO3- Na+. The bimolecular rate constants observed for the beta-fluorinated alkoxides were in the 10(5) M(-1) s(-1) range, such rates representing enhancements (relative to the respective alcohols) of between 100 and almost 1000-fold, depending on the reactivity of the alkoxide. Likewise, the monobasic sodium salts of chloral and fluoral hydrate exhibit similar rate enhancements, relative to their respective hydrates.  相似文献   

12.
Isotope effects have been measured for the abstraction of hydrogen from a series of organic substrates by the perfluoro radical, Na+ -O3SCF2CF2OCF2CF2*, in water. Both primary and secondary deuterium isotope effects were measured, with the primary isotope effects ranging in value from 4.5 for isopropanol to 19.6 for acetic acid. The values for the alpha- and beta-secondary deuterium isotope effects were 1.06 and 1.035, respectively. It was concluded that tunneling contributes significantly to the production of the observed, large primary kinetic isotope effects in these C-H abstraction reactions.  相似文献   

13.
Reaction of Pd(TMEDA)(CH(3))(2) [TMEDA = tetramethylethylenediamine] with fluoroalkyl iodides R(F)I affords a series of square planar Pd(II) complexes Pd(TMEDA)(CH(3))(R(F)) [R(F) = CF(2)CF(3) (9), CFHCF(3) (10), CH(2)CF(3) (11)], presumably by oxidative addition followed by reductive elimination of CH(3)I. The solid-state structures of each compound have been determined by single crystal X-ray diffraction studies, allowing the effect of increasing alpha-fluorination on the structural trans-influence of alkyl ligands to be examined. In these compounds there is no significant difference observed in the trans-influence of the three fluorinated alkyl ligands toward the trans-N atom, although a significant cis-influence on the neighboring methyl ligand is apparent. Oxidative addition of the same series of fluoroalkyl ligands to the corresponding Pt(TMEDA)(CH(3))(2) affords octahedral Pt(IV) complexes trans-Pt(TMEDA)(CH(3))(2)(R(F))I [R(F) = CF(2)CF(3) (12), CFHCF(3) (13), CH(2)CF(3) (14)] as the kinetic products. In each case, subsequent isomerization to the corresponding all cis-isomers is observed; in the case of 13, the stereocenter at the alpha-carbon results in two diastereomeric cis-isomers, which are formed at different rates. The molecular structures of 13 and its more stable all cis-isomer 16b have been crystallographically determined. Kinetic studies of the trans-cis isomerization reactions show the mechanism to involve a polar transition state, presumably involving iodide dissociation, followed by rearrangement of the cation, and iodide recombination. High dielectric solvents increase the rate, but solvent coordinating ability has no effect. Dissolved salts (LiI, LiOTf) show normal accelerative salt effects, with no inhibition in the case of added iodide, consistent with the formation of an intimate ion pair intermediate. The kinetic parameters show that the trans-effects of fluoroalkyl ligands in these compounds follow the order expected from the relative sigma-donor properties of the ligands, with CF(2)CF(3) < CFHCF(3) < CH(2)CF(3).  相似文献   

14.
The photodissociation of CF(3)I at 304 nm has been studied using long time-delayed core-sampling photofragment translational spectroscopy. Due to its capability of detecting the kinetic energy distribution of iodine fragments with high resolution, it is able to directly assign the vibrational state distribution of CF(3) fragments. The vibrational state distributions of CF(3) fragments in the I(*)((2)P(12)) channel, i.e., (3)Q(0+) state, have a propensity of the nu(2) (') umbrella mode with a maximum distribution at the vibrational ground state. For the I((2)P(32)) channel, i.e., (1)Q(1)<--(3)Q(0+), the excitation of the nu(2) (') umbrella mode accounts for the majority of the vibrational excitation of the CF(3) fragments. The 1 nu(1) (') (symmetric CF stretch) +nnu(2) (') combination modes, which are associated with the major progression of the nu(2) (') umbrella mode, are observed for the photodissociation of CF(3)I at the I channel, i.e., (3)Q(1) state. The bond dissociation energy of the CI bond of CF(3)I is determined to be D(0)(CF(3)-I)相似文献   

15.
Inert and optically active pseudo-octahedral Cr(III)N6 and Ru(II)N6 chromophores have been incorporated by self-assembly into heterobimetallic triple-stranded helicates HHH-[CrLnL3]6+ and HHH-[RuLnL3]5+. The crystal structures of [CrLnL(3)](CF(3)SO(3))(6) (Ln=Nd, Eu, Yb, Lu) and [RuLnL3](CF3SO3)5 (Ln=Eu, Lu) demonstrate that the helical structure can accommodate metal ions of different sizes, without sizeable change in the intermetallic MLn distances. These systems are ideally suited for unravelling the molecular factors affecting the intermetallic nd-->4f communication. Visible irradiation of the Cr(III)N6 and Ru(II)N6 chromophores in HHH-[MLnL3]5/6+ (Ln=Nd, Yb, Er; M=Cr, Ru) eventually produces lanthanide-based near infrared (NIR) emission, after directional energy migration within the complexes. Depending on the kinetic regime associated with each specific d-f pair, the NIR luminescence decay times can be tuned from micro- to milliseconds. The origin of this effect, together with its rational control for programming optical functions in discrete heterobimetallic entities, are discussed.  相似文献   

16.
The ESR spectrum of the chain-end radical RCF2CF2* detected in Nafion perfluorinated membranes exposed to the photo-Fenton reagent was accurately simulated by an automatic fitting procedure, using as input the hyperfine coupling tensors of the two F alpha and two F beta nuclei as well as the corresponding directions of the principal values from density functional theory (DFT) calculations. An accurate fit was obtained only for different orientations of the hyperfine coupling tensors for the two F alpha nuclei, indicating a nonplanar structure about the C alpha radical center. The fitted isotropic hyperfine splittings for the two F beta nuclei in the Nafion radical, 24.9 and 27.5 G, are significantly larger than those for the chain-end radical in Teflon (15 G), implying different radical conformations in the two systems. The excellent fit indicated that the geometry and electronic structure of free radicals can be obtained not only from single-crystal ESR spectroscopy, but also, in certain cases, from powder spectra, by combination with data from DFT calculations. The optimized structures obtained by DFT calculations for the CF3CF2CF2CF2* or CF3OCF2CF2* radicals as models provided additional support for the pyramidal structure determined from the spectral fit. Comparison and analysis of calculated and fitted values for the hyperfine splittings of the two F beta nuclei suggested that the radical detected by ESR in Nafion is ROCF2CF2*, which originates from attack of oxygen radicals on the Nafion side chain. The combination of spectrum fitting and DFT is considered important in terms of understanding the hyperfine splittings from 19F nuclei and the different conformations of fluorinated chain-end-type radicals RCF2CF2* in different systems, and also for elucidating the mechanism of Nafion fragmentation when exposed to oxygen radicals in fuel cell conditions.  相似文献   

17.
A combination of laser flash photolysis and competitive kinetic methods have been used to measure the absolute bimolecular rate constants for hydrogen atom abstraction in water from a variety of organic substrates including alcohols, ethers, and carboxylic acids by the perfluoroalkyl radical, *CF(2)CF(2)OCF(2)CF(2)SO(3)(-) Na(+). Comparison, where possible, of these rate constants with those previously measured for analogous reactions in the non-polar organic solvent, 1,3-bis(trifluoromethyl)benzene (J. Am. Chem. Soc, 1999, 121, 7335) show that the alcohols react 2-5 times more rapidly in the water solvent and that the ethers react at the same rate in both solvents. A transition state for hydrogen abstraction that is more reminiscent of an "intimate ion pair" than a "solvent separated ion pair" is invoked to explain these modest solvent effects.  相似文献   

18.
The recombination of fragments resulting from the photodissociation of (fluorinated) alkyl iodides in helium nanodroplets at a wavelength of 266 nm has been investigated by means of ion imaging techniques. It is found that in the case of CH3I an appreciable fraction of the fragments recombine in the aftermath of the photolysis. The proposed mechanism involves a complete translational relaxation of both photofragments inside the nanodroplets followed by geminate recombination of the fragments. In contrast with CH3I, no recombination is observed for CF3I. This is attributed to the larger masses and the different initial kinetic energies of the fragments produced by the photolysis of CF3I, which strongly diminishes the fragment thermalization efficiency.  相似文献   

19.
Kinetic resolution of acyclic secondary allylic silyl ethers by chiral dioxiranes generated in situ from chiral ketones (R)-1 and (R)-2 and Oxone was investigated. An efficient and catalytic method has been developed for kinetic resolution of those substrates with a CCl(3), tert-butyl, or CF(3) group at the alpha-position. In particular, high selectivities (S up to 100) were observed for kinetic resolutions of racemic alpha-trichloromethyl allylic silyl ethers 7 and 9-15 catalyzed by ketones (R)-2. Both the recovered substrates and the resulting epoxides were obtained in high enantiomeric excess. On the basis of steric and electrostatic interactions between the chiral dioxiranes and the racemic substrates, a model was proposed to rationalize the enantioselectivities and diastereoselectivities in the chiral ketone-catalyzed kinetic resolution process.  相似文献   

20.
The effect of particle size on combustion efficiency is an important factor in combustion research. Gas-phase aluminum clusters in oxidizing environment constitute a relatively simple and extensively studied system. In an attempt to underscore the correlation between electronic structure, finite size effect, and reactivity in small aluminum clusters, reactions between aluminum, [Al(13)](-) cluster, and Teflon decomposition fragments were studied using theoretical calculations at the density functional theoretical level. The unimolecular rate constants calculated using transition state and Rice-Ramsperger-Kassel-Marcus theory show that reactions with COF and CF(2) species with aluminum are faster than those involving CF(3) and COF(2). The results show that the kinetic barriers along different exothermic reaction channels correlate with the trends in HOMO(R)-HOMO(TS) (HOMO denotes highest occupied molecular orbital) energy gap and related shifts of the HOMO levels of reactants. Overall reactions involving carbonyl fluoride species (COF and COF(2)) lead to CO elimination and fluorination of the Al cluster. The CF(3)/CF(2) fragments lead to stable multicenter Al-C bond formation on the fluorinated Al cluster surface. Temperature-, energy-, and pressure-dependent rate constants are provided for extrapolating the expected reaction kinetics to conditions similar to known combustion reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号