首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigated plasmonic waveguides in near infra-red spectrum using dumbbell-shaped gold nanoparticles. It is possible to shift localized surface plasmon resonance (LSPR) to the desired wavelength with proper geometrical properties. 3-D FDTD simulations are used to determine the set of geometrical parameters of nanoparticles to obtain LSPR at 1310 and 1550 nm. Employing different configuration of nanoparticles chains, we not only can design waveguides with better optical characteristics but also achieve the demultiplexing function in V-form arrays. The proposed nanoparticles show sharp resonance peak, 168 FWHM bandwidth for λ?=?1310, and 204 nm for λ?=?1550 nm. Linear chains of particles can transport the electromagnetic energy at λ?=?1310 nm, with transmission losses γL?=?3 dB/452 and γT?=?3 dB/446 nm and group velocities vgL?=?0.336C0 and vgT?=?0.256C0 for longitudinal and transverse polarizations, respectively, where C0 is the speed of light in the vacuum. At λ?=?1550 nm, γL?=?3 dB/490, γT?=?3 dB/604, vgL?=?0.382C0 and vgT?=?0.260C0. Moreover, we attained 8.13 as minimum ratio of averaged electric field intensity and 36.8 as minimum ratio of averaged Poynting vector as a function of position between two ports in demultiplexing function.  相似文献   

2.
Excitation spectra (T = 75–300 K; λexc = 450–630 nm) which were measured for the R-lines of Cr3+-doped oxides (α-Al2O3, β-Ga2O3) and for different luminescence lines (R-lines, N-lines) of Cr3+-doped spinels (MgAl2O4, ZnAl2O4, ZnGa2O4) are reported. The excitation maxima observed for different luminescence lines of a given compound exhibit considerable differences: 530 nm ? λmaxexc ? 565 nm for MgAl2O4; 530 nm ? λmaxexc ? 580 nm for ZnAl2O4; 545 nm ? λmaxexc 555 nm for ZnGa2O4. According to the interpretation of N-lines to arise from different classes of Cr3+ ion swith different short range orderd, the excitation maximum of one distinct line should entirely correspond to the transition Δ : 4T24A2 of that Cr3+ class from which the line arises. By this method spectroscopic data about the different kinds of Cr3+ ions present in a given sample can, therefore, be obtained which are not available from absorption measurements. The experimetal data were found to be in agreement with the results of model calculations. Restrictions which limit the accuracy and relevance of the data are discussed.  相似文献   

3.
The B-phycoerythrin hexamer (αβ)6γ of Porphyridium purpureum was isolated and purified. The absorption, circular dichroism, fluorescence and ultrafast time-resolved spectra were obtained. The results showed a double absorption peak at 545 nm and 565 nm and a shoulder peak at 498 nm, and fluorescence emission maxima at 580 nm and 620 nm were observed. The circular dichroism spectra in the near-ultraviolet region were obtained and resolved for the first time, which showed that the two peaks at 260 nm and 305 nm were considered to be correlated to phenylalanine (Phe) and tryptophan (Trp) in a conservative hydrophobic microenvironment, respectively. The circular dichroism spectra in the visible region showed that PEB139α/PEB158β and PEB82α/PEB82β existed as two exciton-coupled bilin pairs. Energy transfer within the exciton-coupled pairs was by exciton splitting, while between the exciton-coupled pairs was by Förster resonance. From the studies of the energy transfer dynamics by ultrafast time-resolved fluorescence spectroscopy, it was confirmed that the energy transfer of the B-PE hexamer had three time components of 8 ps, 60 ps, and 1200 ps. In addition, the internal energy transfer pathways of B-phycoerythrin hexamer were identified by deconvoluting the fluorescence decay curve at different detection wavelengths.  相似文献   

4.
Au/SiO2 nanocomposite films were fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering technique and annealing at different temperature for 20 min (mode A) and at 1000 °C for different annealing time (mode B). The nanocomposite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL). SEM results demonstrate that the size of Au crystallites in mode A first increases and then decreases, on increasing annealing temperature, according to the results of XRD spectra. Analysis of PL spectra in mode B shows that the intensity of the emission peak at 440 nm and 523 nm early increases and late decreases, with increasing annealing time at 1000 °C. The origin of the emission peak at around 440 nm was related to the size and quantity of Au particles and one of the emission peak at around 523 nm was related to the nanostructure of films in agreement with SEM imagines. Experimental results indicated that morphology, microstructure and luminescence of Au/SiO2 nanocomposite films showed close affinity with annealing temperature and annealing time.  相似文献   

5.
The fluorescence spectrum of phenanthrene is found to depend on the wavelength of excitation. This phenomenon — not observed at low temperatures (77°K) — is explained by the simultaneous presence of several emission sources of a different nature. It is proposed that at higher excitation energies, it is highly probable that the energy of radiationless transitions to the S1 state supplies the energy necessary for the destruction of the solvate sphere, and — when λexc < 300 nm — the emission takes place from the unperturbed S1 system of phenanthrene.  相似文献   

6.
BaMoO4:Eu (BEMO) powders were synthesized by the polymeric precursor method (PPM), heat treated at 800 °C for 2 h in a heating rate of 5 °C/min and characterized by powder X-ray diffraction patterns (XRD), Fourier Transform Infra-Red (FTIR) and Raman spectroscopy, besides room temperature Photoluminescence (PL) measurements. The emission spectra of BEMO samples under excitation of 394 nm present the characteristic Eu3+ transitions. The relative intensities of the Eu3+ emissions increase as the concentration of this ion increases from 0.01 to 0.075 mol, but the luminescence is drastically quenched for the Ba0.855Eu0.145MoO4 sample. The one exponential decay curves of the Eu3+ 5D07F2 transition, λ exc = 394 nm and λ em = 614 nm, provided the decay times of around 0.54 ms for all samples. It was observed a broadening of the Bragg reflections and Raman bands when the Eu+3 concentration increases as a consequence of a more disordered material. The presence of MoO3 and Eu2Mo2O7 as additional phases in the BEMO samples where observed when the Eu3+ concentration was 14.5 mol%.  相似文献   

7.
Ultrasound technology was used to treat rice bran protein (RBP), and the structural and functional properties of ultrasonically treated RBP (URBP) and its chlorogenic acid (CA) complex were studied. When ultrasonic power of 200 W was applied for 10 min, the maximum emission peak λmax of the URBP-CA complex in the fluorescence spectrum was red-shifted by 3.6 nm compared to that of the untreated complex. The atomic force microscope (AFM) analysis indicated that the surface roughness of the complex was minimized (3.89 nm) at the ultrasonic power of 200 W and treatment time of 10 min. Under these conditions, the surface hydrophobicity (H0) was 1730, the contents of the α-helix and β-sheet in the complex were 2.97% and 6.17% lower than those in the untreated sample, respectively, the particle size decreased from 106 nm to 18.2 nm, and the absolute value of the zeta-potential increased by 11.0 mV. Therefore, ultrasonic treatment and the addition of CA changed the structural and functional properties of RBP. Moreover, when ultrasonic power of 200 W was applied for 10 min, the solubility, emulsifying activity index (EAI), and emulsion stability index (ESI) were 68%, 126 m2/g, and 37 min, respectively.  相似文献   

8.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
ZnO thin films were grown on (111) CaF2 substrates by magnetron sputtering at room temperature. Structural and optical properties of the ZnO thin films were studied. XRD analysis showed that the ZnO thin films had the (002) preferential orientation. The transmittance of ZnO thin films was over 80% in the visible range. The optical band gap of the ZnO thin films was 3.26 eV. The optical constants (n,k)(n,k) of the ZnO thin films in the wavelength range 300–1000 nm were obtained by infrared spectroscopic ellipsometry measurement. PL spectra of ZnO thin films showed strong UV near-band-edge emission peak at 376.5 nm and weak visible red emission at 643.49 nm using He–Cd laser as the light source, using a synchrotron radiation light source PL spectra showed three emission peak at 320 nm, 410 nm and 542 nm respectively.  相似文献   

10.

A red-emitting fluorescent Riboflavin (RF)/Polyvinylpyrrolidone (PVP)-coated silver nanoparticles system, λem?=?527 nm, Φ?=?0.242, with a diameter of the metallic core of 27.33 nm and a zeta potential of ? 25.05 mV was prepared and investigated regarding its biological activity. We found that PVP has a key role in RF adsorption around the SNPs surface leading to an enhancement of antioxidant properties (~70%), low cytotoxicity (> 90% cell viability, at 50 µL/mL, after 48 h of incubation) as well as to an efficient process of its cellular uptake (~ 60%, after 24 h of incubation) in L929 cells. The results are relevant concerning the involvement of RF and its coenzymes forms in SNPs - based systems, in cellular respiration as well as for future studies as antioxidant marker system on tumoral cells for viewing and monitoring them, by cellular imaging.

  相似文献   

11.
Here we report the monitoring the instant creation of a new fluorescent signal (FS) aroused from a positively charged water-soluble fluorogenic probe, ethidium bromide (EtBr) in the presence of a radical initiator, ammonium persulfate (APS) and an accelerator, tetraethylmetilendiamine (TEMED) for evaluation of deoxyribonucleic acid (DNA) conformation. The results revealed that the occurred FS (λex?=?430 nm; λmax?=?525 nm) is a reduced form of EtBr (λex?=?480 nm; λmax?=?617 nm) and it is completely distinct from hydroethidine (λex?=?350 nm; λmax?=?430 nm), which is two-electron reduced form of EtBr. It was noticed that EtBr was reduced to a new FS during the polymerization of N, N dimethyacrylamide (DMAA) too, at 25 °C in the presence of APS and TEMED or at 55 °C with only APS, and the rate of formation of FS was increased upon treatment time. The effect of nanoclays such as Laponite XLG® and Laponite XLS®, which provide a protective environment for DNA in nature, were also investigated through the reduction process of EtBr in the absence and presence of a water soluble monomer DMAA. We demonstrated that DNA conformation might be evaluated by monitoring FS effectuated during the reduction of EtBr in the presence of nanoclays having positively and negatively charged surfaces. Protective property of DNA against the formation of reduced product was elucidated by carrying out the polymerization at 55 °C. The results revealed that the monitoring of formation of FS in the presence of radical initiator could lead to elucidate the conformation of DNA upon formation of intercalator complex.  相似文献   

12.
Influence of the solvent environments, pumping pulse energies and concentrations on the spectral properties of 1,2,3,8-tetrahydro-1,2,3,3,5-pentamethyl-7H-pyrrolo[3,2-g]quinolin-7-one (LD-423) have been investigated. The photophysical characteristics such as absorption, fluorescence spectra, Stokes’ shift, fluorescence quantum yield, absorption, emission cross sections, extinction coefficient and amplified spontaneous emission (ASE) were measured. Here, LD-423 showed two ASE in a certain organic solution under pulsed laser excitation (Nd: YAG λex?=?355 nm). One of these peaks corresponds to the fluorescence, while the other peak is an anomalous peak which does not have a corresponding fluorescence peak. This abnormal ASE peak can be ascribed to the fact that the excited molecules are connected in the excited state and the solvent acts as a link between them.  相似文献   

13.
Photoluminescence properties of thenardite activated with Eu   总被引:1,自引:0,他引:1  
Na2SO4:Eu phosphors were prepared by heating pure natural thenardite with EuF3 at 900 °C for 20 min in air. The photoluminescence (PL) and excitation spectra of as-prepared and γ-ray-irradiated phosphors were observed at 300 K. The PL spectrum under 394 nm excitation consisted of strong narrow bands with peaks at 579, 592, 616, 652, 697 and 741 nm, assigned to the 5D07FJ (J=0, 1, 2, …, 5) transitions, respectively, within Eu3+. The PL spectrum under 340 nm excitation consisted of a broad Eu2+ band with a peak at 435 nm. The excitation spectrum obtained by monitoring the violet luminescence consisted of a weak band with a peak at approximately 261 nm and a broad Eu2+ band with a peak at approximately 338 nm. The relative efficiency of the violet luminescence of the γ-ray-irradiated phosphor at the exposure of 46 kGy increased up to 3.0 times that of the unirradiated phosphor. The enhancement of violet luminescence by γ-ray irradiation was ascribed to the conversion of Eu3+ to Eu2+ in Na2SO4.  相似文献   

14.
In this study, lysine was investigated as a cross-linker to induce the self-assembly of gold nanoparticles (GNPs) with the variation of solution pH, dosage amounts of lysine, and GNP size. Lysine molecules at acidic pH ranges induced the aggregation of Au colloids via α, ?-amine mediated self-assembly of GNPs, consequently leading to the generation of secondary peak at longer wavelength for aggregated GNPs. At intermediate and basic pH ranges, however, the ionization of carboxylic acid groups in lysine hindered the cross-linking between Au colloids with the consequent disappearance of secondary peak. For the array of small Au colloids (ca. 43 nm), lysine induced heavily-aggregated GNPs on the ITO glass at strongly acidic condition (pH2~3) through its molecular bridging effect. For the array of large Au colloids (ca.70 nm), lysine produced one-dimensional assembly of GNPs on the ITO glass at slightly acidic condition (at pH4.7) through zwitterions-mediated interactions.  相似文献   

15.
Strontium tartrate crystals (STC) were grown in gel using the single tube diffusion method. Powder XRD and FTIR spectroscopy were used for the characterization of the crystal. The optical band-gap (Eg) of STC is found to be 5.46 eV. Photoluminescence (PL) spectra of STC are recorded at different annealing temperature and concentration of dopant Mn. The spectral peaks (λem) of strontium tartrate photoluminor lie around 417, 440, 513 and 620 nm with excitation wavelength (λexc)=379 nm. The peaks at 417, 513 and 620 nm correspond to transitions 2P1/202S1/2, 1D03P0 and 1S→3P0, respectively of Sr. The PL peak observed around 440 nm corresponds to the a4D7/2→a6S5/2 transition of Mn.  相似文献   

16.
Two methods for determination of the mean size of gold nanoparticles, based on measurement of the wavelengths of the maxima λmax of side scattering and extinction in the range 400–700 nm, are compared. Four sols with mean particle diameters d of about 15, 20, 25, and 30 nm, measured using the dynamic light-scattering technique, were studied experimentally. The slope of the size dependence λmax(d) of the spectral position of the scattering peak exceeded that for the extinction peak by a factor of 2.4. This fact ensures a substantially higher accuracy of the scattering method. For simulating polydispersity, mixtures of three colloids with particle diameters of 20, 25, and 30 nm were used: sample S1, with a size distribution close to the normal one of around 25 nm, and sample S2, with equal concentrations of each of the components. The extinction spectra of mixtures S1 and S2 and the initial 25-nm sol (S0) were virtually identical, whereas their scattering spectra showed a pronounced increase in the peak amplitude in the series S0, S1, S2. These results agree with calculations based on the Mie theory. Thus, scattering spectra offer advantages over extinction spectra not only in measuring the mean size of gold particles but also in evaluating their polydispersity.  相似文献   

17.
Three sizes of SmMn2O5 nanorods that are labeled with (<LC>) × axial lengths of 58(17) nm × 25(6) nm, 92(21) nm × 32(8) nm, and 126(25) nm × 52(13) nm were fabricated by the hydrothermal method. All the samples exhibited an antiferroicmagnetic (AFM) peak at approximately 6 K, which was associated with Sm magnetic ordering and no size independence. Another AFM magnetic ordering that belongs to the Mn ion was found with <LC> = 58 nm, 92 nm, and 126 nm at 26 K, 28 K, and 30 K, respectively. The spin-orbit interaction increases with size in the magnetic susceptibility experiment. All the samples displayed a hysteresis loop at 2 K. The coercivity decreases as the size increases. The effects of the size on the crystal structure were elucidated from the Raman spectra of the <LC> = 92 and 126 nm samples at various temperatures. The 126 nm sample displayed a red-shift for the Ag mode with warming, revealing that the Mn–O bonds are more sensitive to temperature in larger SmMn2O5 nanorods. These results demonstrate that the size effect importantly affects the structure and magnetic properties in SmMn2O5 multiferroic nanorods.  相似文献   

18.
Polyynes were prepared by liquid-phase laser ablation of a graphite target at 1064 nm and identified by analyzing UV absorption spectra in deionized water and various aqueous solutions. We observed that major UV absorption peaks coincide with the electronic transitions corresponding to linear hydrogen-capped polyynes (CnH2: n = 6, 8, 10). The peak intensities increased when polyynes were produced by irradiating the target immersed in acidic media, while those were relatively weak in basic media. This leads us to conclude that OH or H+ ions play a certain role in the formation of polyynes.  相似文献   

19.
The absorption and fluorescence spectra of α-carboline, 9H-pyrido[2,3-b]indole, AC, in organic aprotic solvents containing different water proportions and in acid/base aqueous solutions inside and outside the pH range have been examined. In the organic aprotic solvents, the addition of increasing concentrations of water sequentially quenches and shifts to the red the fluorescence spectra of AC. These spectral changes have been rationalized assuming the formation, at the lower water concentrations, of a discrete ground state non-cyclic weakly fluorescent AC hydrate emitting at 376 nm that, upon increasing the water concentrations, evolves to a higher order AC poly hydrate emitting at 397 nm. The changes of the AC absorption spectra in aqueous acid/basic solutions indicate the existence of three ground state prototropic species; the pyridinic protonated cation, C (pKa?=?4.10?±?0.05), the neutral, N (pKa?=?14.5?±?0.2), and the pyrrolic deprotonated anion, A. Conversely, the changes of the AC fluorescence spectra in these media indicate the existence of four excited state species emitting at 376 nm, 397 nm, 460 nm and 465 nm. Since the emissions at 376 nm and 397 nm satisfactorily match those of the hydrates observed in the organic-water mixtures, they were consistently assigned to two differently hydrated ground state N species. The remaining emissions at 460 nm and 465 nm have been assigned without ambiguity, on the basis of their excitation spectra, to the C and A species, respectively. The excited-state pKas of the prototropic species of AC have been estimated by using the Förster-Weller cycle.  相似文献   

20.
CuInS2, CuInSe2 and CuInTe2 nanocubes of chalcopyrite structure have been successfully synthesized by hydrothermal process using deionized water as solvent at 180 °C for 20 h. The crystallinity, compositional, morphological and optical properties of the synthesized samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), Raman and photoluminescence (PL) spectra analyses. The Raman spectra of the synthesized CuInS2, CuInSe2 and CuInTe2 samples show the dominant A1 modes at 293, 172 and 121 cm−1 respectively. The possible chemical reaction and mechanism of nanocubes formation were discussed. The emission wavelength of as synthesized CuInS2, CuInSe2 and CuInTe2 samples were blue shifted at 746 nm (1.66 eV), 863 nm (1.43 eV) and 859 nm (1.44 eV) respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号