首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schiff bases derived from 7-hydroxy-4-methyl-2-oxobenzo[h]chromene-8-carbaldehyde in solution exist as equilibrium mixtures of benzoid and quinoid tautomers. The fraction of the quinoid tautomer increases with rise in solvent polarity. The Schiff base containing a benzo-15-crown-5 fragment on the nitrogen atom was shown to be a new ambident chemosensor capable of selectively binding transition metal cations via reaction at the o-hydroxyaldehyde imine fragment and alkaline-earth metals via host-guest interaction with the crown ether moiety. This compound exhibits a pronounced sensor activity toward Mg2+ and Ba2+ ions and is a selective naked-eye fluorescent chemosensor for Cu2+ and Co2+ ions.  相似文献   

2.
A chemo‐sensor [Ru(bpy)2(bpy‐DPF)](PF6)2 ( 1 ) (bpy=2,2′‐bipyridine, bpy‐DPF=2,2′‐bipyridyl‐4,4′‐bis(N,N‐di(2‐picolyl))formylamide) for Cu2+ using di(2‐picolyl)amine (DPA) as the recognition group and a ruthenium(II) complex as the reporting group was synthesized and characterized successfully. It demonstrates a high selectivity and efficient signaling behavior only for Cu2+ with obvious red‐shifted MLCT (metal‐to‐ligand charge transfer transitions) absorptions and dramatic fluorescence quenching compared with Zn2+ and other metal ions.  相似文献   

3.
A simple cation sensor 1 ((E)-9-((2-hydroxynaphthalen-1-ylimino)methyl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol) bearing both a julolidine moiety and a naphthol moiety was designed and synthesized as a colorimetric sensor for Cu2+. In methanol solution of 1, the presence of Cu2+ led to a distinct naked-eye color change from yellow to purple. The proposed sensing mechanism might be attributed to the decrease in internal charge transfer band. Moreover, the resulting 1–Cu2+ complex sensed cyanide in a fluorometric way via fluorescent changes. These results demonstrate a novel type of the sequential recognition of Cu2+ and CN using two different sensing methods, color change, and fluorescence.  相似文献   

4.
A new perylene diimide (PDI) ligand (1) functionalized with a dipicolylethylenediamine (DPEN) moiety was synthesized and first used as a colorimetric and fluorometric dual-channel sensor to specifically detect the presence of Cu2+ over a wide range of other cations. The solution of 1 (10 μmol/L) upon addition of Cu2+ displayed distinguishing pink color compared with other cations including K+, Ni2+, Ca2+, Mn2+, Na+, Sr2+, Zn2+, Co2+, Cd2+, Mg2+, Cr3+, Ag+, and Ba2+, indicating the sensitivity and selectivity of 1 to Cu2+. Thus, the advantage of this assay is that naked-eye detection of Cu2+ becomes possible. Moreover, among these metal ions investigated, only Cu2+ quenched more than half fluorescent intensity of 1. The ESI-TOF spectrum of a mixture of 1 and CuCl2 in combination of the fluorescence titration spectra of 1 (10 μmol/L) upon addition of various amounts of Cu2+ revealed the formation of a 2:1 metal-ligand complex through the metal coordination interaction. Supported by the National Natural Science Foundation of China (Grant Nos. 20872101 & 20772086)  相似文献   

5.
A selective and sensitive intramolecular charge transfer (ICT) fluorescent chemosensor was designed for Cu2+ in neutral aqueous solutions of pH 7.0. The design of this totally water-soluble fluorescent chemosensor was based on the binding motif of Cu2+ to aminoacid, which is coupled to an ICT fluorophore bearing a 1,3,4-thiodiazole moiety in the electron acceptor. The formation of a 1:1 complex of Cu2+ to 2 was suggested to lead to fluorescence quenching. The quenching obeyed Stern-Volmer theory in neutral aqueous solution of pH 7.0 for Cu2+ over 5.0 × 10−7 to 3.0 × 10−5 mol·L−1, with a quenching constant of 1.8 × 105 L·mol−1 and a detection limit of 2.0 × 10−7 mol·L−1. The binding of Cu2+ to 2 can be fully reversed by addition of chelator EDTA, affording a reversible sensing performance.  相似文献   

6.
A novel 1,8-naphthalimide dye with simple structure has been produced by a facile synthetic method for colorimetric and fluorescent sensing of H+ and Cu2+. In CH3CN/H2O (1/1, v/v), the dye could monitor H+ using dual channels (ratiometric absorbance and fluorescence intensity change) from pH 6.2 to 12.0. Meanwhile, in the pH range of 1.9–5.2, the dye could also be used to detect Cu2+ using triple channels [ultraviolet–visible (UV–Vis) absorption, fluorescence intensity reduction, as well as fluorescence blueshift]. The detection limits for Cu2+ evaluated by colorimetric and fluorescent titration were 6.10 × 10?7 and 2.62 × 10?7 M, respectively. The dye exhibited specific selectivity and sensitivity for H+ and Cu2+ over various coexisting metal ions. Moreover, the sensing mechanism of the dye for H+ and Cu2+ was carefully examined.  相似文献   

7.
A new malonamide fluoroionophore possessing two pyrene moieties was synthesized. This bispyrene exhibited the fluorescence of the pyrene monomer (λem = 395 nm) and intramolecular excimer (λem = 467 nm) emissions. The designed derivative showed the excellent ion sensing ability to Cu2+. The "on-off-off" and "off-on-off" fluorescence responses were demonstrated by the addition of the variable Cu2+ concentration. The utilization of the dual off/on responses could apply to the estimation of the rough Cu2+ concentration.  相似文献   

8.
A novel triphenylamine based oxidative chemosensor TOC was synthesized. The chromogenic and fluorogenic behaviors of TOC towards Hg2+ and Cu2+ ions in a binary mixture of MeCN/H2O (9/1) were dramatically different. TOC displays colorimetric ‘naked eye’ recognition of Hg2+ and fluorogenic ‘turn on’ response towards Cu2+ via a unique cyclization reaction using two different detection modes. Moreover, TOCAZOL obtained from the oxidative cyclization reaction of TOC with Cu(ClO4)2 can be used as a selective fluorescent sensor toward Hg2+ ion.  相似文献   

9.
Novel EuIII complexes with bidentate phosphine oxide ligands containing a bipyridine framework, i.e., [3,3′‐bis(diphenylphosphoryl)‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(BIPYPO)]) and [3,3′‐bis(diphenylphosphoryl)‐6,6′‐dimethyl‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(Me‐BIPYPO)]), were synthesized for lanthanide‐based sensor materials having high emission quantum yields and effective chemosensing properties. The emission quantum yields of [Eu(hfa)3(BIPYPO)] and [Eu(hfa)3(Me‐BIPYPO)] were 71 and 73%, respectively. Metal‐ion sensing properties of the EuIII complexes were also studied by measuring the emission spectra of EuIII complexes in the presence of ZnII or CuII ions. The metal‐ion sensing and the photophysical properties of luminescent EuIII complexes with a bidentate phosphine oxide containing 2,2′‐bipyridine framework are demonstrated for the first time.  相似文献   

10.
《印度化学会志》2021,98(5):100062
Research is going on to synthesize materials for acting as sensors of metal ions and are also published in different journals but the cause for sensing has not been clearly explained. In this paper, the reason for selective sensing of Cu2+ ions has been explained. A novel Schiff base fluorescent probe 3-[(2-hydroxy-naphthalen-1-ylmethylene)-hydrazono]-butan-2-one oxime (NPTH) was designed and synthesized to use as Cu2+ sensor. From our recent experiments, it has been found that only Cu2+ among different metal ions has been sensed by the synthesized ligand. The reason for selection and sensing of Cu2+ by the ligand was established by different spectroscopic techniques. The detection limit of NPTH was calculated as low as 4.11 ​× ​10-4M for Cu2+. Therefore, these results indicate that sensor NPTH has great prospective to detect Cu2+ ion in environmental analysis systems. Density functional theory (DFT) calculations have been done to ascertain the ground state geometry of NPTH.  相似文献   

11.
A new chemosensor for Cu2+ was synthesized based on 1,2,3,4,5,6,7,8,9,10‐decahydroacridine‐1,8‐dione dyes, which exhibited an obvious fluorescent selectivity to the sensing of Cu2+ ions over other cations, such as Na+, K+, Ca2+, Cd2+, Co2+, Hg2+, Mg2+, Mn2+, Ni2+, Zn2+, Ag+ and Pb2+. Moreover, it presented a fluorescent switch function when EDTA was added to the compound‐Cu2+ complex in examined systems.  相似文献   

12.
Hao Wang 《Tetrahedron》2007,63(36):8825-8830
Cholic acid-based fluorescent PET sensor probe 1, bearing a pair of dithiocarbamate pendants as the receptive site and anthracene moiety as the signal displaying unit, was designed and synthesized. The sensor probe not only shows high selectivity and sensitivity to Hg2+ in aqueous acetonitrile solution, but also responds moderately to MeHg+. A distinctive OFF-ON type signaling of up to 10-fold enhancement was observed for this new sensor probe toward Hg2+.  相似文献   

13.
A dual‐function fluorescence resonance energy transfer (FRET)‐based fluorescent and colorimetric probe was rationally fabricated from an energy donor coumarin moiety and an energy acceptor rhodamine moiety linked by a thiohydrazide arm for selective detection of Hg2+ and Cu2+. Two distinct mechanisms were used for the selective detection. Results revealed that probe 1 showed high fluorescent selectivity towards Hg2+ and evident colorimetric selectivity for Cu2+, which was suitable for ‘naked‐eye’ detection.  相似文献   

14.
The introduction of Lawesson′s reagent into a bis‐rhodamine spirolactam system afforded a new fluorescent sensor for Cu2+ ions, SRR , which contained a new tridentate sulfur ligand. SRR showed excellent specificity for Cu2+ ions over other cations (including Cu+, Hg2+, and Fe3+), very high sensitivity (10 nM ), and a rapid response time (3 min). The detection mechanism was investigated by 1H NMR, 13C NMR, 31P NMR, and ESR spectroscopy, MS, and Gaussian calculations. Coordination of a Cu2+ ion to the tridentate sulfur ligand, which promotes ring‐opening of the rhodamine groups, followed by a spontaneous reduction reaction (Cu2+ into Cu+), has been proposed as the sensing mechanism.  相似文献   

15.
A fluorescent probe LZ-N with naphthalimide as fluorophore and N-butylbenzene-1,2-diamine as a new recognition moiety for copper ion was designed and synthesized. The probe LZ-N exhibits high selectivity for Cu2+ ion in aqueous media (CH3CN:H2O = 1:1) over all the other metal ions in our study, more than 20-fold fluorescence enhancement by coordinating with Cu2+, and the maximum emission intensity independence in the range of pH 2.06–9.25. The results of 1H-NMR titration, time-resolved fluorescence decay measurement, and computational optimization illuminate the mechanisms of Cu2+ and probe LZ-N. Confocal fluorescence images and cell viability values test show the high fluorescence enhancement of probe LZ-N for exogenous Cu2+ in living cells.  相似文献   

16.
A new azoimine receptor, R1, was synthesized by Schiff base condensation of 4-(4-butylphenyl) azophenol and 2,6-diaminopyridine and acts as a colorimetric and fluorometric chemosensor for F? and also toward Cu2+ ions in aqueous environment. UV–Vis absorption and fluorescent emission spectra were employed to study the sensing process. Emission study was performed to examine the dual sensing ability of the obtained probe with sequential addition of F? followed by Cu2+ and vice versa. The receptor is an efficient “ON–OFF” fluorescent probe for the fluoride ion. Also, R1 + F? operated as an “OFF–ON” fluorescent sensor for Cu2+ ions. Considering emission intensity and absorption wavelength for F? and Cu2+ ions, a molecular system was developed with the ability to mimic the functions of XNOR logic gating on the molecular level. In addition, R1 behaved as a molecular security keypad lock with F? and Cu2+ inputs. The keypad lock operation is particularly important, as the output of the system depends not only on the proper combination but also on the order of input signals, creating the correct password that can be used to “open” this molecular keypad lock through strong fluorescence emission at 460?nm.  相似文献   

17.
The effects of copper ion on the interaction of [Ru(bpy)2HPIP]2+(bpy = 2,2′-bipyridine, HPIP = 2-(2-hydroxyphenyl) imidazo [4,5-f] [1, 10] phenanthroline) with DNA have been investigated by electronic absorption spectroscopy and fluorescence spectroscopy. HPIP ligand of the complex with an intramolecular hydrogen bond can bind Cu2+ in the absence of DNA, as revealed by the absorbance and fluorescence decrease for [Ru(bpy)2HPIP]2+. The resultant heterometallic complex binds to DNA via intercalation of HPIP into the DNA base pairs and its DNA-binding ability is stronger than [Ru(bpy)2HPIP]2+ itself. The DNA bound [Ru(bpy)2HPIP]2+ cannot bind Cu2+ at low Cu2+ concentration and the intramolecular hydrogen bond in HPIP is located inside the DNA helix. While the Cu2+ concentration is relative high, Cu2+ can quench the fluorescence of DNA bound [Ru(bpy)2HPIP]2+. The quenching reason is proposed.  相似文献   

18.
The mass spectra of 2,2′-anhydrouridine, 2,2′-anhydrothymidine and 2,2′-anhydro-4-thiouridine are reported. The acetyl, trifluoroacetyl, trityl, pivaloyl and trimethylsilyl ether derivatives were also studied. Deuterium labeling in acetyl and trimethylsilyl groups aided characterization of many ions in the spectra, as well as helping to clarify hydrogen migration processes. The anhydronucleosides and their derivatives are readily distinguished from natural nucleosides by the presence of an ion containing the base moiety plus the anhydro-ring plus one hydrogen atom from the rest of the molecule. As for natural nucleosides the [base + H]+ and [base + 2H]+ ions are usually prominent, but in contrast to natural nucleosides, ions characteristic of the sugar moiety do not retain the 2′-oxygen atom (i.e. the oxygen atom of the anhydro-ring). The mass spectra of deuterium labeled derivatives suggest a test for the presence of a 3′-O-acetyl function (the O-acetyl group is lost from the molecular ion much more readily from the 3′- than from the 5′-carbon atom). The trimethylsilyl derivatives showed evidence in their mass spectra for migration of trimethylsilyl groups in addition to hydrogen atoms.  相似文献   

19.
In this paper, N-doped carbon quantum dots (N-CDs) were fabricated using crown daisy leaves, a kitchen waste, as carbon source. The synthesized N-CDs possessed abundant surface functional groups, such as hydroxyl, carboxyl, and amino groups, and had good dispersibility in water. Because of the special fluorescence quenching property toward Cu2+, the synthesized N-CDs can be exploited as an effective label-free fluorescent probe for Cu2+ determination. The possible fluorescence sensing mechanism considered the selective coordination interaction between Cu2+ ion and the hydroxyl, carboxyl, and amino groups of the N-CDs. The control experiments also showed that the N-doped aromatic C–N heterocycle structure played a crucial role in selective sensing of Cu2+. The decrease in fluorescence efficiencies was linearly related with the Cu2+ concentrations in the range of 10.0nM to 120.0nM, with a response limit of 1.0nM. The prepared probe was also applied for Cu2+ determination in real river water.  相似文献   

20.
A conjugated polymer was synthesized by the polymerization of 4,7‐dibromobenzo[2,1,3]thiadiazole ( M‐1 ) with tri{1,4‐diethynyl‐2,5‐bis(2‐(2‐methoxyethoxy)‐ethoxy)}‐benzene ( M‐2 ) via Pd‐catalyzed Sonogashira reaction. The polymer shows strong orange fluorescence. The responsive optical properties of the polymer on various metal ions were investigated through photoluminescence and UV–vis absorption measurements. The polymer displays highly sensitive and selective on‐off Hg2+ fluorescence quenching property in tetrahydrofuran solution in comparison with the other cations including Mg2+, Zn2+, Co2+, Ni2+, Cu2+, Ag+, Cd2+, and Pb2+. More importantly, the fluorescent color of the polymer sensor disappears after addition of Hg2+, which could be easily detected by naked eyes. The results indicate that this kind of polymer sensor incorporating benzo[2,1,3]thiadiazole moiety as a ligand can be used as a novel colorimetric and fluorometric sensor for Hg2+ detection. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号