首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new perylene diimide (PDI) ligand (1) functionalized with a dipicolylethylenediamine (DPEN) moiety was synthesized and first used as a colorimetric and fluorometric dual-channel sensor to specifically detect the presence of Cu2+ over a wide range of other cations. The solution of 1 (10 μmol/L) upon addition of Cu2+ displayed distinguishing pink color compared with other cations including K+, Ni2+, Ca2+, Mn2+, Na+, Sr2+, Zn2+, Co2+, Cd2+, Mg2+, Cr3+, Ag+, and Ba2+, indicating the sensitivity and selectivity of 1 to Cu2+. Thus, the advantage of this assay is that naked-eye detection of Cu2+ becomes possible. Moreover, among these metal ions investigated, only Cu2+ quenched more than half fluorescent intensity of 1. The ESI-TOF spectrum of a mixture of 1 and CuCl2 in combination of the fluorescence titration spectra of 1 (10 μmol/L) upon addition of various amounts of Cu2+ revealed the formation of a 2:1 metal-ligand complex through the metal coordination interaction. Supported by the National Natural Science Foundation of China (Grant Nos. 20872101 & 20772086)  相似文献   

2.
The process of complex formation of maleic acid (H2L) with the ions Zn2+, Ni2+, Co2+, Cu2+ was studied by potentiometric titration in a wide range of concentration ratios at 298 K and I = 0.1 mol/l (NaNO3). The moieties ZnL, CoL, NiL, NiL 2 2? , CuL, and CuL 2 2? were detected and their stability constants were determined.  相似文献   

3.
An efficient highly diluted synthetic approach to the synthesis of 1,9-dicarbonyl-2,8-dioxo-butyne ester ferrocenophane (L) has been developed. The title compound was characterized by IR, UV, FL, 1H NMR, spectroscopies, elemental analysis and so on. Further complex L shows fluorescence responses to Co2+ and Cu2+ in CH3OH, The results indicate that the complex could be applied in multianayte detection. The binding ability of receptor L CH3OH was tested for various cations (Co2+, Cu2+, Zn2+, and Ni2+ in water) and the binding constants for Co2+ and Cu2+ were the computed, having a distinct absorbance shift. The receptor is a very attractive array because its distinct absorbance shift profile in a semi-aqueous phase, making it applicable in the area of biology, environmental sciences and material chemistry.  相似文献   

4.
Feather fibers were modified by treatment with 5% tannic acid (TA) solution. Kinetics of the modification was investigated as a function of the reaction time. The maximum loading of TA on feather reached 8.3% after being treated by TA for 9 h. The adsorption of metal cations (Cu2+, Zn2+) by unmodified and TA-modified feather fibers was investigated as a function of fiber weight gain, temperature, and pH of the metal solution. The adsorption was enhanced at alkaline pH and ambient temperature and increased with the weight gain of TA. The maximum uptake of metal cations (Cu2+, 0.77 mmol/g; Zn2+, 0.95 mmol/g) was obtained by TA-modified feather at weight gain: 8.3%, pH 11, while at the acidic pH, the adsorption of metal cations by either unmodified or TA-modified feather was negligible. The influence of anions on the adsorption of metal cations was also studied. The uptake of Cu2+ from chloride was higher and faster than that from nitrate. Desorption of the metals was performed at acidic pH 2.5 for 48 h. The feather–TA–metal complexes exhibited higher stability for metal cations than the feather–metal complexes. All these experiments reveal that TA-modified feather fibers have good adsorption to metal cations and can be used as metal adsorbent in wastewater treatment.  相似文献   

5.
6.
A new insoluble solid functionalized ligand system bearing chelating ligand group of the general formula P-(CH2)3-N[CH2CONH(C6H4)NH2]2, where P represents [Si–O] n polysiloxane network, was prepared by the reaction of the immobilized diethyliminodiacetate polysiloxane ligand system, P-(CH2)3N(CH2CO2Et)2 with 1,2-diaminobenzene in toluene. 13C CP-MAS NMR, XPS and FTIR results showed that most ethylacetate groups (–COOEt) were converted into the amide groups (–N–C=O). The new functionalized ligand system exhibits high capacity for extraction and removal of the metal ions (Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) with efficiency of 95–97% after recovery from its primary metal complexes. This functionalized ligand system formed 1:1 metal to ligand complexes.  相似文献   

7.
A novel 1,8-naphthalimide dye with simple structure has been produced by a facile synthetic method for colorimetric and fluorescent sensing of H+ and Cu2+. In CH3CN/H2O (1/1, v/v), the dye could monitor H+ using dual channels (ratiometric absorbance and fluorescence intensity change) from pH 6.2 to 12.0. Meanwhile, in the pH range of 1.9–5.2, the dye could also be used to detect Cu2+ using triple channels [ultraviolet–visible (UV–Vis) absorption, fluorescence intensity reduction, as well as fluorescence blueshift]. The detection limits for Cu2+ evaluated by colorimetric and fluorescent titration were 6.10 × 10?7 and 2.62 × 10?7 M, respectively. The dye exhibited specific selectivity and sensitivity for H+ and Cu2+ over various coexisting metal ions. Moreover, the sensing mechanism of the dye for H+ and Cu2+ was carefully examined.  相似文献   

8.
The efficiency of calcium and magnesium phosphates of different compositions in the extraction of Cu2+, Zn2, and Co2+ ions from aqueous solutions was studied.  相似文献   

9.
The volta potential difference method at 298.15 K was used to determine the real primary medium effect for magnesium, calcium, cadmium, and copper ions, and also the real Gibbs transfer energy of these ions from water into a mixed water ethanol (EtOH) solution. The surface potential value at the nonaqueous solution/gas phase interface $ \Delta \chi _{H_2 O}^{EtOH} $ \Delta \chi _{H_2 O}^{EtOH} was obtained. With account for this value, chemical thermodynamic characteristics of the studied ions in the water-ethanol solvent were calculated and the effect of composition and nature of the mixed solvent on the values obtained was analyzed. The dependence of variation in the thermodynamic characteristics of cation resolvation was established on their crystallographic radius that corresponds to the following sequence: Ca2+ < Cd2+ < Cu2+ < Mg2+.  相似文献   

10.
A selective and sensitive intramolecular charge transfer (ICT) fluorescent chemosensor was designed for Cu2+ in neutral aqueous solutions of pH 7.0. The design of this totally water-soluble fluorescent chemosensor was based on the binding motif of Cu2+ to aminoacid, which is coupled to an ICT fluorophore bearing a 1,3,4-thiodiazole moiety in the electron acceptor. The formation of a 1:1 complex of Cu2+ to 2 was suggested to lead to fluorescence quenching. The quenching obeyed Stern-Volmer theory in neutral aqueous solution of pH 7.0 for Cu2+ over 5.0 × 10−7 to 3.0 × 10−5 mol·L−1, with a quenching constant of 1.8 × 105 L·mol−1 and a detection limit of 2.0 × 10−7 mol·L−1. The binding of Cu2+ to 2 can be fully reversed by addition of chelator EDTA, affording a reversible sensing performance.  相似文献   

11.
Two novel coordination polymers, namely {[Co(Ttac)0.5(1,4-Bib)(H2O)] · H2O}n (I) and {[La(HTtac)2(2H2O)] · H2O}n (II) (H4Ttac = 4,5-di(3'-carboxylphenyl)-phthalic acid, 1,4-Bib = 1,4-bis(1-imidazoly) benzene), have been designed and successfully prepared via hydrothermal process, and characterized by elemental analyses, IR spectroscopy, and single crystal X-ray diffraction (CIF files CCDC nos. 1039298 (I), 1039300 (II)). Structural analysis reveals that the H4Ttac ligands adopt different coordination modes in the as-synthesized I and II, and thus give rise to the targeted coordination polymers with different configurations. It is worth mentioning that, coordination polymer I is assembled from low-dimensional structures into three-dimensional (3D) via π···π stacking interactions, while three-dimensional coordination polymer II is formed by covalent bonds. Luminescent properties of coordination polymer II have been studied at ambient temperature. Significantly, luminescent measurement indicates that coordination polymer II may be acted as potential luminescent recognition sensors towards Cu2+ and Mn2+ ions.  相似文献   

12.
The influence of Ca2+-, Cu2+- and Fe3+-exchanged montmorillonite (MMT) on the type of interaction with aniline in the interlayer space of MMT has been studied by means of X-ray powder diffraction and infrared spectra. Results of X-ray diffraction showed that aniline was successfully intercalated into the interlayer space of MMT. Based on IR spectra evaluation, aniline was indirectly coordinated through a water-bridge in Ca2+- and Fe3+-MMT and it was indirectly coordinated through a water-bridge as well as protonated in Cu2+-MMT (the spectrum of protonated aniline showed deformation and changes in the NH 3 + absorption at approximately 1521 cm?1). It is important to point out that Cu2+-MMT indirect coordination and protonation occur simultaneously.  相似文献   

13.
Isothermal titration calorimetry has been used to determine the stoichiometry, formation constants and thermodynamic parameters (ΔG o, ΔH, ΔS) for the formation of the citrate complexes with the Mn2+, Co2+, Ni2+ and Zn2+ ions. The measurements were run in Cacodylate, Pipes and Mes buffer solutions with a pH of 6, at 298.15 K. A constant ionic strength of 100 mM was maintained with NaClO4. The influence of a metal ion on its interaction energy with the citrate ions and the stability of the resulting complexes have been discussed.  相似文献   

14.
A new fluorescent sensor (1) for Pb2+ containing a 1,4-dicyano-2,5-bis(styryl)benzene fluorophore and 2-(N,N′-bis(carboxylmethyl))amino-1-carboxylmethoxylbenzene as receptor has been synthesized. The sensor selectively responds to Pb2+ in the aqueous environment, and brings about similar and significant changes in one- and two-photon excited emission spectra: λ max red-shift from 460 (519) to 590 nm. The selective response is pH-independent in a large physiological pH range, and two-photon action cross section (ϕδ) is 51 GM (1 GM = 1×10−50 cm4·s·photon−1·molecule−1) at 740 nm. Supported by the National Natural Science Foundation of China (Grant Nos. 20705621 & 20706008), the National Basic Research Project of China (Grant No. 2009CB724706), the Ministry of Education of China, Changjiang Scholars Innovative Research Team in University (Grant No. IRT0711) and Cultivation Fund of the Key Scientific and Technical Innovation Project (Grant No. 707016)  相似文献   

15.
P(1-VIm-co-MMA) copolymers with 4 or 44 wt.% 1-VIm (abbreviated PVM-4 and PVM-44) where polymerized from 1-VIm (1-vinylimidazole) and methylmethacrylate with azobisisobutyronitrile as initiator and reacted with either Cu2+ or Zn2+. The resulting coordinated polymer complexes were studied using ICP-AES, CP/MAS 13C NMR, conductivity measurements, vibrational spectroscopy (mid-FTIR and far-FTIR), DSC, and EPR. It was established by ICP-AES, CP/MAS 13C NMR, conductivity, mid-FTIR and EPR measurements that the transition metal ions in the complexes were exclusively coordinated by the imidazole ligand. The coordination geometry is square planar with regard to Cu(II) complexes. The strong interaction between the polymeric imidazole ligand and the transition metal ion cross-links the system, resulting in augmentation of T g (the glass transition temperature), especially for copolymers with high relative amount of 1-VIm. The effect of changing metal ion is more complicated and depends on both the strength of the coordinate interaction as well as the coordination number. The solubility of the coordinate polymer complex in conventional solvents is low due to the coordinate cross-links. However, the coordinate polymer complexes are soluble in strongly coordinating solvents such as acetonitrile and dimethylsulfoxide.  相似文献   

16.
We have investigated the presence of foreign ions into the bulk structure and the external surfaces of aragonite using periodic ab-initio methods. Four cations isovalent to Ca2+ were studied: Mg2+, Sr2+, Ba2+ and Zn2+. The calculations were performed at structures (bulk, surface) that contain four and eight CaCO3 units. Our results, at the Hartree-Fock level, show that the incorporation of those ions into aragonite depends strongly on their size. Mg2+ and Zn2+, due to their smaller size, can substitute Ca2+ ions in the crystal lattice while the incorporation of Sr2+ and Ba2+ into aragonite is energetically less favoured. Examination of the [011], [110] and [001] surfaces of aragonite revealed that the surface incorporation reduces the energetic cost for the larger ions. These systems provide challenging examples for most shape analysis methods applied in Mathematical Chemistry.  相似文献   

17.
Fluoroionophoric properties of benzothiadiazoyl-bistriazoyl amino acids derivatives toward metal ions were investigated by UV-Vis and fluorescence spectroscopy. Our results show that the watersoluble lysine derivative 2 exhibited a significant selectivity toward Cu2+ in “on-off” type response in buffer solution at pH 7.4.  相似文献   

18.
A direct adsorption method for the synthesis of Cu2+-doped CdTe quantum dot (QD)-sensitized TiO2 nanotubes (TNTAs) for use as a photoanode is reported in this study. The influences of the molar concentration of Cu2+, the sensitization temperature, the sensitization time, and the loop index on the photovoltaic performance of the CdTe:Cu2+/TNTAswas investigated. Scanning electron microscopy images showed that the CdTe:Cu2+ QDs are well dispersed on the TNTA surface. UV–vis adsorption measurements showed that the visible absorption of the TNTAs was enhanced by the CdTe:Cu2+ QD sensitization. Whereas the power conversion efficiency (PCE) of the bare TNTAs was 0.11%, the maximum PCE of the CdTe:5%Cu2+/TNTAs was 3.70% with a sensitization time of 5.0 h, a sensitization temperature of 60 °C, and a loop index of 2. Therefore, CdTe:5%Cu2+/TNTAs may be employed in quantum-dot-sensitized solar cells.
Graphical abstract The conversion efficiency of the CdTe: 5%Cu2+/TiO2 nanotube arrays can reach a maximum of 3.7%, which is enhanced by 33-fold, on comparison with bare TiO2 nanotube arrays (0.11%).
  相似文献   

19.
In this study, a simple approach was described for the fabrication of CaSO4/Fe0 composite used as a novel adsorbent for the reductive removal of Cu2+ from aqueous solutions. The magnetic CaSO4/Fe0 composite was prepared by a solid state reaction at 550 °C in the H2 atmosphere using CaSO4·2H2O/α-FeOOH as a precursor. The structure and morphology of the as-synthesized magnetic composite were characterized by X-ray diffraction, field emission scanning electron microscopy and a superconducting quantum interference device, respectively. Results showed that the CaSO4/Fe0 composite with a rod-like shape could be easily acquired from the CaSO4·2H2O/α-FeOOH precursor with the ratio of 1:0.5 at 550 °C in the H2 atmosphere for 1 h. The CaSO4/Fe0 composite exhibited enhanced performance relevant to the reductive removal of Cu2+. The removal amount of Cu2+ increased linearly with increasing of concentration of Cu2+ in wastewater. Possible removal mechanisms were proposed as follows: (1) the formation of Cu2O by fast reduction of Cu2+ with Fe0 nanoparticles on interface of CaSO4/Fe0 composite, (2) proper adsorption of Cu2+ on the surface of CaSO4/Fe0 composite, (3) the hydrous iron oxide (HIO) such as Fe (OH)3 and FeOOH in situ generated on the rest of CaSO4/Fe0 composite could further adsorb Cu2+ from wastewater.  相似文献   

20.
A new malonamide fluoroionophore possessing two pyrene moieties was synthesized. This bispyrene exhibited the fluorescence of the pyrene monomer (λem = 395 nm) and intramolecular excimer (λem = 467 nm) emissions. The designed derivative showed the excellent ion sensing ability to Cu2+. The "on-off-off" and "off-on-off" fluorescence responses were demonstrated by the addition of the variable Cu2+ concentration. The utilization of the dual off/on responses could apply to the estimation of the rough Cu2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号