首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
For the purpose of targeted drug delivery, composite biodegradable nanoparticles were prepared from chitosan and the poly-γ-glutamic acid via an ionotropic gelation process. These stable self-assembled nanoparticles were characterized by dynamic light scattering, transmission electron microscopy, and atomic force microscopy, which demonstrated that the nanosystem consists of spherical particles with a smooth surface both in aqueous environment and in dried state. Toxicity measurements showed that the composition is nontoxic when tested either on cell cultures or in animal feeding experiments. To evaluate the potential of the nanosystem for intracellular drug delivery, the nanoparticles were fluorescently labeled and folic acid was attached as a cancer cell-specific targeting moiety. The ability of the particles to be internalized was tested using confocal microscopic imaging on cultured A2780/AD ovarian cancer cells, which overexpress folate receptors. The quantitative data obtained by digital processing of the intensity of green color of each pixel in the pictures inside the cell boundaries and total intensity of fluorescence inside the cells showed that “targeted” particles internalized into the cells significantly faster and the total accumulation of these particles was substantially higher in the cancer cells when compared with “nontargeted” particles, which may facilitate effective and specific cytoplasmic delivery of anticancer agents loaded into such nanoparticles. Zsolt Keresztessy and Magdolna Bodnár contributed equally to this work.  相似文献   

3.
Russian Chemical Bulletin - A method is proposed for immobilization of anti-ischemic drug phosphocreatine on the surface of aminated silica and magnetite nanoparticles of similar size and shape....  相似文献   

4.
An MCM-41-type mesoporous silica nanoparticle (MSN) material with a large average pore diameter (5.4 nm) is synthesized and characterized. The in vitro uptake and release profiles of cytochrome c by the MSN were investigated. The enzymatic activity of the released protein was quantitatively analyzed and compared with that of the native cytochrome c in physiological buffer solutions. We found that the enzymes released from the MSNs are still functional and highly active in catalyzing the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) by hydrogen peroxide. In contrast to the fact that cytochrome c is a cell-membrane-impermeable protein, we discovered that the cytochrome c-encapsulated MSNs could be internalized by live human cervical cancer cells (HeLa) and the protein could be released into the cytoplasm. We envision that these MSNs with large pores could serve as a transmembrane delivery vehicle for controlled release of membrane-impermeable proteins in live cells, which may lead to many important biotechnological applications including therapeutics and metabolic manipulation of cells.  相似文献   

5.
Carrier-free, functionalized drug nanoparticles for targeted drug delivery   总被引:1,自引:0,他引:1  
We demonstrate a new concept of carrier-free functionalized drug nanoparticles for targeted drug delivery. It exhibits significantly enhanced drug efficacy to folate receptor-positive cells with high selectivity and a high drug loading content up to more than 78%.  相似文献   

6.
Efficient delivery of therapeutics into tumor cells to increase the intracellular drug concentration is a major challenge for cancer therapy due to drug resistance and inefficient cellular uptake. Herein, we have designed a tailor-made dual pH-sensitive polymer-drug conjugate nanoparticulate system to overcome the challenges. The nanoparticle is capable of reversing its surface charge from negative to positive at tumor extracellular pH (~6.8) to facilitate cell internalization. Subsequently, the significantly increased acidity in subcellular compartments such as the endosome (~5.0) further promotes doxorubicin release from the endocytosed drug carriers. This dual pH-sensitive nanoparticle has showed enhanced cytotoxicity in drug-resistant cancer stem cells, indicating its great potential for cancer therapy.  相似文献   

7.
An aggregation-induced emission (AIE) luminogen, tetraphenylethene, has been successfully grafted onto mesoporous silica SBA-15 for the first time. The materials emit blue light upon UV irradiation, and are photostable for the ibuprofen (IBU) drug loading and release process, indicating their great potential for biomedical applications.  相似文献   

8.
Recent advancements in controlling the surface properties and particle morphology of the structurally defined mesoporous silica materials with high surface area (>700 m(2) g(-1)) and pore volume (>1 cm(3) g(-1)) have significantly enhanced their biocompatibility. Various methods have been developed for the functionalization of both the internal pore and exterior particle surfaces of these silicates with a tunable pore diameter ranging from 2 to 30 nm and a narrow pore size distribution. Herein, we review the recent research progress on the design of functional mesoporous silica materials for stimuli-responsive controlled release delivery of pharmaceutical drugs, genes, and other chemicals. Furthermore, the recent breakthroughs in utilizing these nanoscale porous materials as sensors for selective detections of various neurotransmitters and biological molecules are summarized.  相似文献   

9.
Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH sensitivity were developed for oral delivery of protein drugs, using bovine serum albumin (BSA) as a model drug. The composite drug-loaded microparticles with a mean particle size less than 200 μm were prepared by a convenient shredding method. Since the microparticles were formed by tripolyphosphate cross-linking, electrostatic complexation by alginate and/or pectin, as well as ionotropic gelation with calcium ions, the microparticles exhibited an improved pH-sensitive drug release property. The in vitro drug release behaviors of the microparticles were studied in simulated gastric (pH 1.2 and pH 5.0), intestinal (pH 7.4) and colonic (pH 6.0 and pH 6.8 with enzyme) media. For the composite microparticles with suitable compositions, the releases of BSA at pH 1.2 and pH 5.0 could be effectively sustained, while the releases at pH 7.4, pH 6.8 and pH 6.0 increased significantly, especially in the presence of pectinase. These results clearly suggested that the microparticles had potential for site-specific protein drug delivery through oral administration.  相似文献   

10.
Chitosan-cyclodextrin hybrid nanoparticles (NPs) were obtained by the ionic gelation process in the presence of glutathione (GSH), chosen as a model drug. NPs were characterized by means of transmission electron microscopy and zeta-potential measurements. Furthermore, a detailed X-ray photoelectron spectroscopy study was carried out in both conventional and depth-profile modes. The combination of controlled ion-erosion experiments and a scrupulous curve-fitting approach allowed for the first time the quantitative study of the GSH in-depth distribution in the NPs. NPs were proven to efficiently encapsulate GSH in their inner cores, thus showing promising perspectives as drug carriers.  相似文献   

11.
Amphiphilic biodegradable succinylchitosan nanoparticles modified with folic acid are described that act as an emulsifier to form nanoparticles. Their molecular structures and physicochemical as well as self‐assembly properties are characterized by means of FT‐IR, 1H NMR, FESEM, DLS, and TEM. The nanoparticles are 60–80 nm in size and are not toxic in vitro. They are immobilized with the cytostatic drug doxorubicin. Specific transport of doxorubicin by the nanoparticles into the folate‐receptor‐overexpressing cancer cells and its biological activity as well as in vitro release are demonstrated. It is shown that under acidic condition more drug is released. The nanoparticles can thus not only specifically deliver doxorubicin to its target, but also release the drug depending on the pH.

  相似文献   


12.
Mesoporous materials for drug delivery   总被引:10,自引:0,他引:10  
Research on mesoporous materials for biomedical purposes has experienced an outstanding increase during recent years. Since 2001, when MCM-41 was first proposed as drug-delivery system, silica-based materials, such as SBA-15 or MCM-48, and some metal-organic frameworks have been discussed as drug carriers and controlled-release systems. Mesoporous materials are intended for both systemic-delivery systems and implantable local-delivery devices. The latter application provides very promising possibilities in the field of bone-tissue repair because of the excellent behavior of these materials as bioceramics. This Minireview deals with the advances in this field by the control of the textural parameters, surface functionalization, and the synthesis of sophisticated stimuli-response systems.  相似文献   

13.
A kind of pH‐responsive carbon quantum dots?doxorubicin nanoparticles drug delivery platform (D‐Biotin/DOX‐loaded mPEG‐OAL/N‐CQDs) was designed and synthesized. The system consists of fluorescent carbon dots as cross‐linkers, and D‐Biotin worked as targeting groups, which made the system have a pH correspondence, doxorubicin hydrochloride (DOX) as the target drug, oxidized sodium alginate (OAL) as carrier materials. Ultraviolet (UV)‐Vis spectrum showed that the drug‐loading rate of DOX is 10.5%, and the drug release in vitro suggested that the system had a pH response and tumor cellular targeted, the drug release rate is 65.6% at the value of pH is 5.0, which is much higher than that at the value of pH is 7.4. The cytotoxicity test and laser confocal fluorescence imaging showed that the synthesized drug delivery system has high cytotoxicity to cancer cells, and the drug‐loaded nanoparticles could enter the cells through endocytosis.  相似文献   

14.
Modern nanomedicine aims at delivering drugs or cells specifically to defective cells; therefore, this calls for developing multifunctional nanocarriers for drug delivery and cell-tracking. Mesoporous silica nanoparticles (MSNs) are well suited for this task. In this feature article, we highlight the strategies in the synthesis and functionalization of small, uniform and colloidal stable MSNs. We then discuss cell uptake of MSNs and tracking cells, as both aspects are closely related to the efficacy of drug delivery and theranostics. Some examples of stimulated drug delivery are described. For application considerations, toxicity and pharmacokinetics are critical issues and in vivo studies are summarized.  相似文献   

15.
Mesoporous silica nanoparticles (MSN) have been widely used for drug delivery due to their large specific surface area and excellent biocompatibility. However, the mesoporous structure of MSN would lead to the inevitable “premature release” of the drugs, and therefore the modification of MSN for controlled delivery seems to be a necessary step. Herein, chitosan (CS) was used for the surface functionalization of MSN via amidation reaction, and the introduced CS could function as a “gatekeeper” and the drug of methotrexate (MTX) might be encapsulated in the mesopores of MSN. As a result, the “premature release” of the encapsulated MTX could be effectively circumvented with the aid of the CS cap. More importantly, the drug delivery from the hybrid of MSN and CS (MSN/CS) can be endowed with pH-sensitivity by the introduction of CS because the amide bonding between CS and MSN is highly pH-sensitive. The cumulative release of MTX from the MSN/CS is more pronounced at pH 5.0 (80.86%) than those at pH 6.8 (40.46%) and pH 7.4 (18.25%).  相似文献   

16.
The present study investigates the synthesis and effectiveness of gold/gelatin nanoparticles (NPs) biopolymer as a carrier for methotrexate (MTX) drug. Two different shapes of gold particles, including spherical AuNPs (50 & 100 nm) and gold nanorods (AuNRs) with three different sizes (20, 50 and 100 nm length) were synthesized using the chemical reduction method. The effect of AuNPs size and shape on the entrapment efficiency (E.E), the release rate of the drug, and cellular uptake were investigated. The surfaces of both AuNPs and AuNRs were coated with a gelatin biopolymer, and the stability and property of the generated compounds were studied. Moreover, MTX as a chemotherapeutic agent was loaded on the gelatin-coated AuNPs/AuNRs complexes. The physicochemical properties of the gelatin-coated AuNPs/AuNRs complexes were studied using ultraviolet-visible (UV–Vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. The E.E and MTX release behavior from the complexes at pH values of 7.4 and 5.4 and temperatures of 37 and 40 °C were investigated in vitro. The cytotoxic effects of AuNPs, AuNPs-Gelatin, AuNPs-Gelatin-MTX, AuNRs, AuNRs-Gelatin, AuNRs-Gelatin-MTX and free MTX were studied. The results indicated that the E.E of AuNPs was higher than that of AuNRs. The highest release rate of the drug was related to the AuNR1-gelatin complex (pH 5.4 and temperature of 40 °C). In addition, MTX loaded AuNR2-gelatin showed the highest cytotoxic effect on the MCF-7 breast cancer cell line so that even its cell cytotoxicity was more than that of the free drug.  相似文献   

17.
Oxygen-deficient luminescent mesoporous silica nanoparticles with uniform morphology/size and integrated mesoporosity-luminescent property in a single nanoparticle are successfully synthesized by a bottom-up self-assembly route followed by a post-calcination process, and can be used to facilely load/deliver drugs into cells and luminescently image cells.  相似文献   

18.
A low-molecular-weight gel with dual pH and glucose sensitivity was designed as the gate controller for mesoporous silica nanoparticles (MSNs) to fabricate a smart drug delivery system. The smart gel caped MSNs could control the antidiabetic drug release via the detection of glucose and pH levels.  相似文献   

19.
The authors describe new bifunctional mesoporous silica nanoparticles (NPs) for specific targeting of tumor cells and for intracellular delivery of the cancer drug doxorubicin (DOX). Mesoporous silica nanoparticles (MSNPs) were coated with blue fluorescent N-graphene quantum dots, loaded with the drug DOX, and finally coated with hyaluronic acid (HA). Cellular uptake of the NPs with an architecture of the type HA-DOX-GQD@MSNPs enabled imaging of human cervical carcinoma (HeLa) cells via fluorescence microscopy. The cytotoxicity of the nanoparticles on HeLa cells was also assessed. The results suggest that the NPs are higher cytotoxicity effect and exert in living cell imaging ability. Compared to the majority of other drug nanocarrier systems, the one described here enables simultaneous DOX release and fluorescent monitoring.
Graphical abstract Schematic of the bifunctional mesoporous silica nanoparticles were obtained via the Stöber method, along with the doxorubicin loaded and the hyaluronic acid capped. The sensor shows good specificity and significant cytotoxicity effect on Hela cells. (TEOS: tetraethyl orthosilicate; GQDs: graphene quantum dots; DOX: doxorubicin; HA: Hyaluronic acid).
  相似文献   

20.
Most present nanodrug delivery systems have been developed to target cancer cells but rarely nuclei. However, nuclear-targeted drug delivery is expected to kill cancer cells more directly and efficiently. In this work, TAT peptide has been employed to conjugate onto mesoporous silica nanoparticles (MSNs-TAT) with high payload for nuclear-targeted drug delivery for the first time. Monodispersed MSNs-TAT of varied particle sizes have been synthesized to investigate the effects of particle size and TAT conjugation on the nuclear membrane penetrability of MSNs. MSNs-TAT with a diameter of 50 nm or smaller can efficiently target the nucleus and deliver the active anticancer drug doxorubicin (DOX) into the targeted nucleus, killing these cancer cells with much enhanced efficiencies. This study may provide an effective strategy for the design and development of cell-nuclear-targeted drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号