首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of an investigation into the influence of sulfolane, a commonly used supercharging agent, on electrospray ionization mass spectrometry (ESI-MS) measurements of protein–ligand affinities are described. Binding measurements carried out on four protein–carbohydrate complexes, lysozyme with β-d-GlcNAc-(1→4)-β-d-GlcNAc-(1→4)-β-d-GlcNAc-(1→4)-d-GlcNAc, a single chain variable fragment and α-d-Gal-(1→2)-[α-d-Abe-(1→3)]-α-d-Man-OCH3, cholera toxin B subunit homopentamer with β-d-Gal-(1→3)-β-d-GalNAc-(1→4)[α-d-Neu5Ac-(2→3)]-β-d-Gal-(1→4)-β-d-Glc, and a fragment of galectin 3 and α-l-Fuc-(1→2)-β-d-Gal-(1→3)-β-d-GlcNAc-(1→3)-β-d-Gal-(1→4)-β-d-Glc, revealed that sulfolane generally reduces the apparent (as measured by ESI-MS) protein–ligand affinities. To establish the origin of this effect, a detailed study was undertaken using the lysozyme–tetrasaccharide interaction as a model system. Measurements carried out using isothermal titration calorimetry (ITC), circular dichroism, and nuclear magnetic resonance spectroscopies reveal that sulfolane reduces the binding affinity in solution but does not cause any significant change in the higher order structure of lysozyme or to the intermolecular interactions. These observations confirm that changes to the structure of lysozyme in bulk solution are not responsible for the supercharging effect induced by sulfolane. Moreover, the agreement between the ESI-MS and ITC-derived affinities indicates that there is no dissociation of the complex during ESI or in the gas phase (i.e., in-source dissociation). This finding suggests that supercharging of lysozyme by sulfolane is not related to protein unfolding during the ESI process. Binding measurements performed using liquid sample desorption ESI-MS revealed that protein supercharging with sulfolane can be achieved without a reduction in affinity.
Graphical Abstract ?
  相似文献   

2.
Ionic liquids (ILs) based aqueous biphasic systems (ABSs) have been successfully applied to the extraction and purification of biomolecules. Although much research has focused on the effect of ILs on the phase formation, there are few reports that describe the phase behavior of quaternary IL-based ABS systems using amino acids (AAs) as additives. Here, 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim]BF4) formed an ABS with sodium citrate (Na3C6H5O7) with the aid of AAs. The phase behavior and physical properties of the ABS were investigated at 298 K. The capacity of the AA to create the ABS (area of biphasic region) increases with increasing in solubility and decrease with the molecular weight of the ILs and follows the trend glycine?>?l-alanine?≈?l-lysine?>?l-threonine?>?l-proline?≈?l-arginine?>?none. Moreover, the pH of the top and bottom phases containing l-proline as additive are nearly neutral; l-threonine, glycine, and l-alanine result in mildly acidic environments, while l-arginine and l-lysine provide basic pH conditions. The results show that the effects of the addition of the AAs can be considerable and important in the simulation, design calculation and pH control of ABS for efficient separation and extraction processes.  相似文献   

3.
d-Mannitol belongs to a linear polyol with six-carbon and has indispensable usage in medicine and industry. In order to obtain more efficient d-mannitol producer, this study has screened out a stable mutant Penicillium sp. T2-M10 that was isolated from the initial d-mannitol-produced strain Penicillium sp.T2-8 via UV irradiation as well as nitrosoguanidine (NTG) induction. The mutant had a considerable enhancement in yield of d-mannitol based on optimizing fermentation. The production condition was optimized as the PDB medium with 24 g/L glucose for 9 days. The results showed that the production of d-mannitol from the mutant strain T2-M10 increased 125% in contrast with the parental strain. Meanwhile, the fact that d-mannitol is the main product in the mutant simplified the process of purification. Our finding revealed the potential value of the mutant strain Penicillium sp. T2-M10 to be a d-mannitol-producing strain.  相似文献   

4.
Two natural steroidal glycosides, diosgenin 3-O-α-l-rhamnopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside (1) and laxogenin 3-O-α-l-rhamnopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→4)]-β-d-glucopyranoside (2) with important cytotoxic activity against the HCT 116 and HT-29 human colon cancer cell lines have been efficiently synthesized via straightforward sequential glycosylation reaction with the combined use of N-phenyltrifluoroacetimidates and trichloroacetimidates donors at room temperature. All structures of the synthesized new compounds were identified by 1H NMR, 13C NMR and HRMS spectra.  相似文献   

5.
Herein, the synthesis and characterization of a novel chiral Schiff bases derived from ferrocene, coded as 3, have been reported. The sensing behavior of the synthesized compound has been examined towards the enantiomers of some amino acids (methionine, alanine, serine, histidine, and threonine) by spectrofluorimetric method. The fluorescence response of compound 3 showed noticeable enhancement upon addition of d-methionine compared to l-methionine and kept nearly linear correlation with the concentration of d-methionine. The value of enantiomeric fluorescence difference ratio (ef) has been determined to be 1.54 when d - and l- methionine amount is 100 times more than compound 3. The results showed that the compound 3 can be used as a sensor for enantio-selective recognition of d-methionine.  相似文献   

6.
A novel and inexpensive hybrid (combined experimental and theoretical) approach was used to quantitatively identify anomer proportions of d-glucose, d-galactose and d-mannose in water. The study involves three parts: recording of experimental FT-IR spectra of monosaccharides in water, calculation of vibrational frequencies of all stable anomers of monosaccharides and regression analysis of theoretical and experimental intensities. No expensive experimental processes and high-level calculations were needed during the study. The results were compared with the data from pure experimental and molecular dynamic studies. It has been concluded that in water while d-glucose and d-mannose have two stable anomers, α-pyranose and β-pyranose, d-galactose has four stable anomers, α-pyranose, β-pyranose, α-furanose and β-furanose. Comparison of detected results with the literature data showed that the developed method is working for the quantitative detection of anomer proportions of monosaccharides in water.  相似文献   

7.
The anticancer properties of two previously characterized pairs of optically pure chiral complex salts [Cu(phen)(ala)(H2O)]X·xH2O (phen?=?1.10-phenanthroline; X?=?NO3?; ala: l-alanine (l-ala) 1 and d-alanine (d-ala) 2; and (X?=?Cl?; ala: l-ala, 3 and d-ala, 4; x?=?number of lattice water molecules) are reported herein, together with the crystal structure of the d-enantiomer 4. Unlike cisplatin which is ineffective against MCF-7 cancer cells with the absence of caspase-3 protein expression, these two pairs of complex salts were effective against this cell line and they were able to induce an increase in intracellular ROS, loss in mitochondrial membrane potential, cell cycle arrest mainly at SubG1 phase , caspase-9 activation, and caspase-3/caspase-7-independent apoptosis. Screening of 1 on the NCI-60 panel of human cancer cell lines showed that it was effective against most of the cell lines. MTT-NCI modified assay screening was also done on other cancer cell lines, viz. A549, CNE1, and HepG2, and two normal cell lines, viz. MCF-10A and CHANG. The effects of chirality of these Cu(II) compounds, especially the greater selectivity of d-enantiomers over the l-counterparts, on their anticancer properties are also reported herein.  相似文献   

8.
Two novel sugar acid-binding lectins were purified from Haplomitrium mnioides (Lindb.) Schust. using a procedure consisting of ammonium sulfate precipitation, G-50 gel filtration, hydroxyapatite chromatography, and HW-50 gel filtration. We reported their partial physicochemical properties: molecular weight, affinity for carbohydrates and organic acids, pH stability, and dependence of their hemagglutination activity on metal ions. We also determined their N-terminal amino acid sequences. H. mnioides lectins (HMLs) were monomers (one with a molecular weight of approximately 27 kDa, and the other with a molecular weight of approximately 105 kDa) under both nonreducing and reducing conditions. They were named HML27 and HML105, respectively. Both HMLs had an affinity for N-acetylneuraminic acid, d-glucuronic acid, d-glucaric acid, bovine submaxillary mucin, heparin, and organic acids, such as citrate, 2-oxoglutaric acid, and d-2-hydroxyglutarate. Furthermore, HML27 had an affinity for α-d-galacturonic acid, d-malate, l-malate, and pyruvate, while HML105 had an affinity for d-gluconic acid. HML27 and HML105 are novel plant lectins: they have an affinity for sugar acids and organic acids and specifically recognize the carboxyl group, and there is no homology between their N-terminal amino acid sequences and those of the previously described lectins and agglutinins.  相似文献   

9.
An electrochemical chiral sensing platform based on amino-functionalized graphene quantum dots/β-cyclodextrin modified glassy carbon electrode (NH2-GQDs/β-CD/GCE) was developed for enantioselective detection of tryptophan (Trp) isomers. NH2-GQDs/β-CD/GCE showed high electrocatalytic activity and good analytical behavior toward the oxidation of Trp isomers. The oxidation peak potentials and oxidation peak currents of Trp isomers at NH2-GQDs/β-CD/GCE surface were observed by differential pulse voltammetry. NH2-GQDs/β-CD nanocomposite exhibited different binding ability for two Trp isomers and selectively bonded with d-Trp, resulting in the higher oxidation peak current of d-Trp at NH2-GQDs/β-CD/GCE surface. Trp isomers exhibited different oxidation peak potentials at NH2-GQDs/β-CD/GCE surface, and the peak potential separation between l-Trp and d-Trp was around 0.022 V, which was used for the enantioselective detection of Trp isomers. Under the optimum experimental conditions, the oxidation peak currents were linearly dependent on the concentrations of Trp isomers. The linear ranges of l-Trp and d-Trp were all from 1.0 to 30.0 μM with correlation coefficients of 0.9886 and 0.9800, respectively. The detection limits of l-Trp and d-Trp were 0.65 and 0.12 μM (3σ/K), respectively. Such NH2-GQDs/β-CD/GCE displayed high anti-interference against some physiological substances, good reproducibility and excellent long-term stability toward Trp isomers detection in biomedical applications.  相似文献   

10.
Apparent molar volumes \((\phi_{V})\) of glycine/l-alanine in water and in aqueous citric acid (CA) solutions of varying concentrations, i.e. (0.05, 0.10, 0.20, 0.30, 0.40 and 0.50) mol·kg?1 were determined from density measurements at temperatures T?=?(288.15, 298.15, 308.15, 310.15 and 318.15) K and at atmospheric pressure. Limiting partial molar volumes \((\phi_V^{\text{o}})\) and their corresponding partial molar volumes of transfer \((\Delta_{\text{tr}} \phi_{V} )\) have been calculated from the \(\phi_{V}\) data. The negative \(\Delta_{\text{tr}} \phi_{V}\) values obtained for glycine/l-alanine from water to aqueous CA solutions indicate the dominance of hydrophilic–hydrophobic/hydrophobic–hydrophilic and hydrophobic–hydrophobic interactions over ion/hydrophilic–dipolar interactions. Further, pair and triplet interaction coefficients, i.e. \((V_{\text{AB}} )\;{\text{and}}\; (V_{\text{ABB}} )\) along with hydration number \((n_{\text{H}} )\) have also been calculated. The effect of temperature on the volumetric properties of glycine/l-alanine in water and in aqueous CA solutions has been determined from the limiting partial molar expansibilities \((\partial \phi_{V}^{\text{o}} /\partial T)_{p}\) and their second-order derivative \((\partial^{2} \phi_{V}^{\text{o}} /\partial T^{2} )_{{P}}\). The apparent specific volumes \((\nu_{\phi} )\) for glycine and l-alanine tend to approach sweet taste behavior both in the presence of water and in aqueous CA solutions. The \(\nu_{\phi}\) values for glycine/l-alanine increase with increase in concentration of CA at all temperatures studied. This reveals that CA helps in enhancing the sweet taste behavior of glycine/l-alanine which also supports the dominance of hydrophobic–hydrophobic interactions.  相似文献   

11.
Vapor pressure osmometry was applied to the systems calcium l-aspartate ((S)-aminobutanedioic acid calcium salt)?+?water for varying molalities of Ca–l-Asp (mCa–l-Asp?=?0.01–1.02 mol·kg?1) and guanidinium hydrochloride (methanamidine hydrochloride)?+?sodium L–aspartate ((S)–aminobutanedioic acid sodium salt)?+?water, varying the molalities of GndmCl and Na–l-Asp (mNa–l-Asp?=?0.1, 0.25, 0.4, 0.57 mol·kg?1 and mGndmCl?=?0.1–1.1 mol·kg?1) at T?=?298.15 K and 310.15 K. From vapor pressure osmometry, activities of water, and the corresponding osmotic coefficients of the mixtures Ca–l-Asp?+?water and Na–l-Asp?+?GndmCl?+?water have been calculated, both being directly related to the chemical potentials of the different species and therefore to their Gibbs energy. Mean molal ion activity coefficients were obtained from experimental data fits with the Pitzer equations and the corresponding dual and triple interaction parameters were derived for the Ca–l-Asp?+?water binary system. β(2) Pitzer parameters different from zero are required for Ca–l-Asp in water to reproduce the osmotic coefficient decrease with increasing concentration. Mean Spherical Approximation parameters accounting for Coulomb and short range interactions that describe the calcium and magnesium aspartates and glutamates are given. The decrease in the chemical potential of the aspartates corresponds to the Hofmeister series: NaAsp?>?Mg(Asp)2?>?CaAsp. A strong interaction between amino acid and salt due to specific dispersion interactions in amino acid salt systems containing guanidinium based salt has been revealed that is in agreement with MD and half-empirical quantum-chemical calculations.  相似文献   

12.
Kinetics of the substitution reactions between monofunctional Au(III) complexes, [Au(dien)Cl]2+, [Au(bpma)Cl]2+ and [Au(terpy)Cl]2+ (dien?=?3-azapentane-1,5-diamine, bpma?=?di-(2-picolyl) amine, terpy?=?2,2′;6′,2″-terpyridine), and biologically relevant sulphur ligands, namely glutathione (GSH), l-methionine (l-Met) and l-cysteine (l-Cys), were studied in 0.1 M HCl (pH?=?1.0). The reactions were followed under pseudo-first-order conditions as a function of ligand concentration and temperature using stopped-flow spectrophotometry. The [Au(terpy)Cl]2+ complex proved to be more reactive than the [Au(bpma)Cl]2+ and [Au(dien)Cl]2+ complexes. The reactivities of the nucleophiles follow the same order for all three complexes, viz. l-Met?>?GSH?>?l-Cys. Values of the activation parameters of the reactions support an associative substitution mechanism. In order to confirm that these monofunctional Au(III) complexes undergo a single substitution process in strongly acidic medium, the reaction between [Au(terpy)Cl]2+ and l-Met was studied by HPLC. At pH?=?1.0, only one reaction product was detected.  相似文献   

13.
Chiral transmission between monosaccharides and amino acids via photodissociation in the gas phase was examined using a tandem mass spectrometer fitted with an electrospray ionization source and a cold ion trap in order to investigate the origin of the homochirality of biomolecules in molecular clouds. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of the monosaccharide enantiomers glucose (Glc) and galactose (Gal) with protonated l-tryptophan H+(l-Trp) were obtained by photoexcitation of the indole ring of l-Trp. l-Trp dissociated via Cα–Cβ bond cleavage when noncovalently complexed with d-Glc; however, no dissociation of l-Trp occurred in the homochiral H+(l-Trp)(l-Glc) noncovalent complex, where the energy absorbed by l-Trp was released through the evaporation of l-Glc. This enantioselective photodissociation of Trp was due to the transmission of chirality from Glc to Trp via photodissociation in the gas-phase noncovalent complexes, and was applied to the quantitative chiral analysis of monosaccharides. The enantiomeric excess of monosaccharides in solution could be determined by measuring the relative abundance of the two product ions in a single photodissociation mass spectrum of the cold gas-phase noncovalent complex with H+(l-Trp), and by referring to the linear relationships derived in this work.
Graphical Abstract ?
  相似文献   

14.
Herein, we have proposed a single-step preparation of topological gels using vinyl-modified β-cyclodextrin (V-β-CyD) and isoprene. Copolymerization of V-β-CyD and isoprene in an aqueous solution resulted in gelation due to V-β-CyD acting as a novel type of copolymer chain cross-linker. The vinyl moiety of V-β-CyD becomes a part of the copolymer, while the β-CyD moiety of V-β-CyD simultaneously incorporates the isoprene component of the copolymer. V-β-CyD is capable of two different modes of cross-linking at each end, i.e., chemically bonding and mechanically interlocking. Due to the shape of the cross-linking point, we refer to it as figure-of-six cross-linking. Nuclear magnetic resonance analysis showed that the gel contained V-β-CyD and isoprene in an approximately 1:0.3 stoichiometry. The relatively high content of β-CyD was reflected in the character of the gel; the gel swelled in dimethylformamide which is a good solvent of β-CyD. A fluorometric analysis using 6-(p-toluidino)-2-naphthalenesulfonic acid showed that the appended β-CyD was able to accommodate guest molecules. Introduction of an additional vinyl monomer into the gel was also successful. Addition of 4-vinylphenylboronic acid to the preparation procedure yielded a sugar-responsive gel that swelled in the presence of d-fructose.  相似文献   

15.
The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (d-allose and d-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars d-allose and d-psicose, thereby extending the available biomolecules in the Drude polarizable FF.  相似文献   

16.
Synthetic methods used for the preparation of linear β-(1→3)-d-glucooligosaccharides with three and more monosaccharide units and their conjugates with carrier proteins, as well as the application of such derivatives in the mechanistic study of bioactivites of natural β-(1→3)-d-glucans and in the design of conjugated antifungal vaccines are considered.  相似文献   

17.
Reducing the viscosity of molasses environmentally and selectively removing the harmful ingredients for microbes are the keys to promoting the bioavailability of molasses. A simple and environmental in situ pretreatment method integrating surfactants and alkali was developed to reduce the viscosity of molasses prior to l-lysine production using Escherichia coli ZY0217. Adding activated carbon and modified orange peel based on the in situ pretreatment process effectively removed pigments and excessive zinc in the molasses and also significantly increased the cell growth and l-lysine yield from E. coli ZY0217. The experimental results showed that a mixture of secondary alkane sulfonate, an anionic surfactant, and HodagCB-6, a non-ionic surfactant, effectively reduced the viscosity of the molasses more so than any single surfactant. When the surfactant mixture was added at a concentration of 0.04 g/L to the molasses, the ω value was 0.4, and when ammonia was added at 0.6 %, the lowest viscosity of 705 mPa?·?s was obtained. Further, 91.5 % of the color and 86.68 % of the original levels of zinc were removed using an activated carbon and modified orange peel treatment on the molasses with the lowest viscosity, which further promoted cell growth and l-lysine production. In the fed-batch cultivation process, the l-lysine concentration achieved using a constant-speed feeding strategy was 45.89 g/L, with an l-lysine yield of 27.18 %, whereas the l-lysine yield from untreated molasses was only 10.13 %. The increase in l-lysine yield was related to the reduced viscosity and the detoxification of the molasses. Lastly, the pretreatment was found to significantly enhance the conversion of sugars in the molasses to l-lysine.  相似文献   

18.
This review compiles the combined chemical and enzymatic synthesis of aromatic l-amino acids (l-phenylalanine, l-tyrosine, l-DOPA, l-tryptophan, and their derivatives and precursors) specifically labeled with carbon and hydrogen isotopes, which were elaborated in our research group by the past 20 years. These compounds could be then employed to characterize the mechanisms of enzymatic reactions via kinetic and solvent isotope effects methods.  相似文献   

19.
Phospholipids generally dominate in bacterial lipids. The negatively charged nature of phospholipids renders bacteria susceptible to cationic antibiotic peptides. In comparison with Gram-negative bacteria, Gram-positive bacteria in general have much less zwitterionic phosphatidylethanolamine. However, they are known for producing aminoacylated phosphatidylglycerol (PG), especially positively charged l-lysyl-PG, which is catalyzed by lysyl-PG synthase MprF, which appears to have a broad range of specificity for l-aminoacyl transfer RNAs. In addition, many Gram-positive bacteria also have a dlt-gene-coded d-alanylation pathway for lipoteichoic acids and wall teichoic acids covalently attached to a glycolipid or peptidoglycan. d-Alanylation also masks the dominant negative charge of the phosphate-rich polymers of teichoic acids. Using mass spectrometry, we have recently observed that precursor scans in negative mode for deprotonated amino acid fragments were most sensitive for ester-linked amino acids. Such a scan for precursors generating an m/z 145 lysyl anion revealed lysyl-PG as well as an additional species 100?m/z units greater than lysyl-PG. This unexpected species corresponded precisely to the expected mass of N-succinylated lysyl-PG. Tandem mass spectrometry revealed a precise match to the fragmentation pattern of this putative new species. PG, lysyl-PG, and N-succinyl-lysyl-PG may form a complete loop of charge reversal from -1 to +1 and then back to -1. Analogous charge reversal by N-succinylation of lysine residues in the bacterial as well as eukaryotic proteomes has been recently discovered as a major posttranslational modification. Such modification in bacterial lipids is possibly catalyzed by an enzyme homologous to the enzymes that modify lysine residues in proteins.
Graphical Abstract ?
  相似文献   

20.
The molar heat capacity and the standard (p 0 = 0.1 MPa) molar enthalpies of formation of the crystalline of bis(glycinate)lead(II), Pb(gly)2; bis(dl-alaninate)lead(II), Pb(dl-ala)2; bis(dl-valinate)lead(II), Pb(dl-val)2; bis(dl-valinate)cadmium(II), Cd(dl-val)2 and bis(dl-valinate)zinc(II), Zn(dl-val)2, were determined, at T = 298.15 K, by differential scanning calorimetry, and high precision solution-reaction calorimetry, respectively. The standard molar enthalpies of formation of the complexes in the gaseous state, the mean molar metal–ligand dissociation enthalpies, M(II)–amino acid, \( \langle D_{\text{m}} \rangle \)(M–L), were derived and compared with analogous copper(II)–ligand and nickel(II)–ligand.θθ
M(II)–amino acid \( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \)(cr)/kJ mol?1
Bis(glycinate)lead(II), Pb(gly)2 ?998.9 ± 1.9
Bis(dl-alaninate)lead(II), Pb(ala)2 ?1048.7 ± 1.8
Bis(dl-valinate)lead(II), Pb(val)2 ?1166.3 ± 2.5
Bis(dl-valinate)cadmium(II), Cd(val)2 ?1243.7 ± 2.7
Bis(dl-valinate)zinc(II), Zn(val)2 ?1306.1 ± 2.3
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号